Add training/usage code
Browse files
README.md
CHANGED
@@ -23,6 +23,93 @@ model-index:
|
|
23 |
# **TQC** Agent playing **BipedalWalker-v3**
|
24 |
This is a trained model of a **TQC** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
23 |
# **TQC** Agent playing **BipedalWalker-v3**
|
24 |
This is a trained model of a **TQC** agent playing **BipedalWalker-v3** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
|
28 |
+
```python
|
29 |
+
from huggingface_sb3 import load_from_hub
|
30 |
+
from sb3_contrib import TQC
|
31 |
+
from stable_baselines3.common.env_util import make_vec_env
|
32 |
+
from stable_baselines3.common.evaluation import evaluate_policy
|
33 |
+
|
34 |
+
# Download checkpoint
|
35 |
+
checkpoint = load_from_hub("araffin/tqc-BipedalWalker-v3", "tqc-BipedalWalker-v3.zip")
|
36 |
+
# Load the model
|
37 |
+
model = TQC.load(checkpoint)
|
38 |
+
|
39 |
+
env = make_vec_env("BipedalWalker-v3", n_envs=1)
|
40 |
+
|
41 |
+
# Evaluate
|
42 |
+
print("Evaluating model")
|
43 |
+
mean_reward, std_reward = evaluate_policy(
|
44 |
+
model,
|
45 |
+
env,
|
46 |
+
n_eval_episodes=20,
|
47 |
+
deterministic=True,
|
48 |
+
)
|
49 |
+
print(f"Mean reward = {mean_reward:.2f} +/- {std_reward:.2f}")
|
50 |
+
|
51 |
+
# Start a new episode
|
52 |
+
obs = env.reset()
|
53 |
+
|
54 |
+
try:
|
55 |
+
while True:
|
56 |
+
action, _states = model.predict(obs, deterministic=True)
|
57 |
+
obs, rewards, dones, info = env.step(action)
|
58 |
+
env.render()
|
59 |
+
except KeyboardInterrupt:
|
60 |
+
pass
|
61 |
+
```
|
62 |
+
|
63 |
+
## Training code (with SB3)
|
64 |
+
|
65 |
+
```python
|
66 |
+
from sb3_contrib import TQC
|
67 |
+
from stable_baselines3.common.env_util import make_vec_env
|
68 |
+
from stable_baselines3.common.callbacks import EvalCallback
|
69 |
+
|
70 |
+
# Create the environment
|
71 |
+
env_id = "BipedalWalker-v3"
|
72 |
+
n_envs = 2
|
73 |
+
env = make_vec_env(env_id, n_envs=n_envs)
|
74 |
+
|
75 |
+
# Create the evaluation envs
|
76 |
+
eval_envs = make_vec_env(env_id, n_envs=5)
|
77 |
+
|
78 |
+
# Adjust evaluation interval depending on the number of envs
|
79 |
+
eval_freq = int(1e5)
|
80 |
+
eval_freq = max(eval_freq // n_envs, 1)
|
81 |
+
|
82 |
+
# Create evaluation callback to save best model
|
83 |
+
# and monitor agent performance
|
84 |
+
eval_callback = EvalCallback(
|
85 |
+
eval_envs,
|
86 |
+
best_model_save_path="./logs/",
|
87 |
+
eval_freq=eval_freq,
|
88 |
+
n_eval_episodes=10,
|
89 |
+
)
|
90 |
+
|
91 |
+
# Instantiate the agent
|
92 |
+
# Hyperparameters from https://github.com/DLR-RM/rl-baselines3-zoo
|
93 |
+
model = TQC(
|
94 |
+
"MlpPolicy",
|
95 |
+
env,
|
96 |
+
learning_starts=10000,
|
97 |
+
batch_size=256,
|
98 |
+
buffer_size=300000,
|
99 |
+
learning_rate=7.3e-4,
|
100 |
+
use_sde=True,
|
101 |
+
train_freq=8,
|
102 |
+
gradient_steps=8,
|
103 |
+
gamma=0.98,
|
104 |
+
tau=0.02,
|
105 |
+
policy_kwargs=dict(log_std_init=-3, net_arch=[400, 300]),
|
106 |
+
verbose=1,
|
107 |
+
)
|
108 |
+
|
109 |
+
# Train the agent (you can kill it before using ctrl+c)
|
110 |
+
try:
|
111 |
+
model.learn(total_timesteps=int(5e5), callback=eval_callback, log_interval=10)
|
112 |
+
except KeyboardInterrupt:
|
113 |
+
pass
|
114 |
+
```
|
115 |
|