araffin commited on
Commit
00c8510
·
verified ·
1 Parent(s): fc20291

Initial commit

Browse files
README.md CHANGED
@@ -10,7 +10,7 @@ model-index:
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
- value: 3003.20 +/- 9.77
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
 
10
  results:
11
  - metrics:
12
  - type: mean_reward
13
+ value: 3000.47 +/- 12.58
14
  name: mean_reward
15
  task:
16
  type: reinforcement-learning
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ced883fde344cd5531fe563acb4a678709ce7bce8f249a5bd047790554e5210d
3
+ size 1532937
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": 3003.2044213, "std_reward": 9.768151272485037, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-04T22:23:17.491627"}
 
1
+ {"mean_reward": 3000.4744345, "std_reward": 12.58479606855654, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-06-04T22:31:11.115167"}
tqc-donkey-mountain-track-v0.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd2a6e624eef5badbe2e856b8b6956455346035aeffe7c8e37015e673dddfc7a
3
  size 3968979
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5b0aaf55f82f2bfa0a2293ec5e6921414d9e2b2b192af1b27fbe5290aacfde0
3
  size 3968979
tqc-donkey-mountain-track-v0/data CHANGED
@@ -4,17 +4,17 @@
4
  ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function TQCPolicy.__init__ at 0x7f509167d3b0>",
8
- "_build": "<function TQCPolicy._build at 0x7f509167d440>",
9
- "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f509167d4d0>",
10
- "reset_noise": "<function TQCPolicy.reset_noise at 0x7f509167d560>",
11
- "make_actor": "<function TQCPolicy.make_actor at 0x7f509167d5f0>",
12
- "make_critic": "<function TQCPolicy.make_critic at 0x7f509167d680>",
13
- "forward": "<function TQCPolicy.forward at 0x7f509167d710>",
14
- "_predict": "<function TQCPolicy._predict at 0x7f509167d7a0>",
15
- "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f509167d830>",
16
  "__abstractmethods__": "frozenset()",
17
- "_abc_impl": "<_abc_data object at 0x7f509166a810>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
@@ -103,12 +103,12 @@
103
  ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
  "__module__": "stable_baselines3.common.buffers",
105
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
- "__init__": "<function ReplayBuffer.__init__ at 0x7f5091f1c830>",
107
- "add": "<function ReplayBuffer.add at 0x7f5091f1c8c0>",
108
- "sample": "<function ReplayBuffer.sample at 0x7f5091a88f80>",
109
- "_get_samples": "<function ReplayBuffer._get_samples at 0x7f5091a87050>",
110
  "__abstractmethods__": "frozenset()",
111
- "_abc_impl": "<_abc_data object at 0x7f5091f58cc0>"
112
  },
113
  "replay_buffer_kwargs": {},
114
  "train_freq": {
 
4
  ":serialized:": "gASVKgAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMCVRRQ1BvbGljeZSTlC4=",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the feature extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function TQCPolicy.__init__ at 0x7f50d6d963b0>",
8
+ "_build": "<function TQCPolicy._build at 0x7f50d6d96440>",
9
+ "_get_constructor_parameters": "<function TQCPolicy._get_constructor_parameters at 0x7f50d6d964d0>",
10
+ "reset_noise": "<function TQCPolicy.reset_noise at 0x7f50d6d96560>",
11
+ "make_actor": "<function TQCPolicy.make_actor at 0x7f50d6d965f0>",
12
+ "make_critic": "<function TQCPolicy.make_critic at 0x7f50d6d96680>",
13
+ "forward": "<function TQCPolicy.forward at 0x7f50d6d96710>",
14
+ "_predict": "<function TQCPolicy._predict at 0x7f50d6d967a0>",
15
+ "set_training_mode": "<function TQCPolicy.set_training_mode at 0x7f50d6d96830>",
16
  "__abstractmethods__": "frozenset()",
17
+ "_abc_impl": "<_abc_data object at 0x7f50d6d83810>"
18
  },
19
  "verbose": 1,
20
  "policy_kwargs": {
 
103
  ":serialized:": "gASVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
104
  "__module__": "stable_baselines3.common.buffers",
105
  "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device:\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
106
+ "__init__": "<function ReplayBuffer.__init__ at 0x7f50d7636830>",
107
+ "add": "<function ReplayBuffer.add at 0x7f50d76368c0>",
108
+ "sample": "<function ReplayBuffer.sample at 0x7f50d71a1f80>",
109
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x7f50d71a0050>",
110
  "__abstractmethods__": "frozenset()",
111
+ "_abc_impl": "<_abc_data object at 0x7f50d7671cc0>"
112
  },
113
  "replay_buffer_kwargs": {},
114
  "train_freq": {