arampacha commited on
Commit
f3f904f
1 Parent(s): 5ccf4d0
Files changed (31) hide show
  1. .gitattributes +3 -0
  2. README.md +83 -0
  3. added_tokens.json +1 -0
  4. all_results.json +15 -0
  5. alphabet.json +1 -0
  6. config.json +107 -0
  7. eval.py +136 -0
  8. eval_results.json +10 -0
  9. language_model/5gram.bin +3 -0
  10. language_model/attrs.json +1 -0
  11. language_model/unigrams.txt +3 -0
  12. log_mozilla-foundation_common_voice_8_0_uk_test_predictions.txt +0 -0
  13. log_mozilla-foundation_common_voice_8_0_uk_test_targets.txt +0 -0
  14. mozilla-foundation_common_voice_8_0_uk_test_eval_results.txt +2 -0
  15. preprocessor_config.json +10 -0
  16. pytorch_model.bin +3 -0
  17. run.sh +39 -0
  18. run_speech_recognition_ctc.py +826 -0
  19. runs/Feb03_18-41-15_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643913972.3215802/events.out.tfevents.1643913972.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.619480.1 +3 -0
  20. runs/Feb03_18-41-15_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643913972.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.619480.0 +3 -0
  21. runs/Feb04_00-36-56_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643935272.2024918/events.out.tfevents.1643935272.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.756120.1 +3 -0
  22. runs/Feb04_00-36-56_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643935272.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.756120.0 +3 -0
  23. runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643935834.3797746/events.out.tfevents.1643935834.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.1 +3 -0
  24. runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643935834.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.0 +3 -0
  25. runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643998124.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.2 +3 -0
  26. special_tokens_map.json +1 -0
  27. tokenizer_config.json +1 -0
  28. train_results.json +8 -0
  29. trainer_state.json +825 -0
  30. training_args.bin +3 -0
  31. vocab.json +1 -0
.gitattributes CHANGED
@@ -25,3 +25,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ pytorch_model.bin filter=lfs diff=lfs merge=lfs -text
29
+ language_model/5gram.bin filter=lfs diff=lfs merge=lfs -text
30
+ language_model/unigrams.txt filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - automatic-speech-recognition
5
+ - /workspace/data/uk/noizy_student_1/
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: ''
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ #
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the /WORKSPACE/DATA/UK/NOIZY_STUDENT_1/ - NA dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.1285
20
+ - Wer: 0.1821
21
+ - Cer: 0.0342
22
+
23
+ ## Model description
24
+
25
+ More information needed
26
+
27
+ ## Intended uses & limitations
28
+
29
+ More information needed
30
+
31
+ ## Training and evaluation data
32
+
33
+ More information needed
34
+
35
+ ## Training procedure
36
+
37
+ ### Training hyperparameters
38
+
39
+ The following hyperparameters were used during training:
40
+ - learning_rate: 5e-05
41
+ - train_batch_size: 16
42
+ - eval_batch_size: 64
43
+ - seed: 42
44
+ - gradient_accumulation_steps: 8
45
+ - total_train_batch_size: 128
46
+ - optimizer: Adam with betas=(0.9,0.98) and epsilon=1e-08
47
+ - lr_scheduler_type: cosine
48
+ - lr_scheduler_warmup_ratio: 0.1
49
+ - training_steps: 10000
50
+ - mixed_precision_training: Native AMP
51
+
52
+ ### Training results
53
+
54
+ | Training Loss | Epoch | Step | Cer | Validation Loss | Wer |
55
+ |:-------------:|:-----:|:-----:|:------:|:---------------:|:------:|
56
+ | 1.2323 | 3.22 | 500 | 0.0797 | 0.2816 | 0.4133 |
57
+ | 0.9826 | 6.45 | 1000 | 0.0514 | 0.1970 | 0.2688 |
58
+ | 0.8628 | 9.67 | 1500 | 0.0474 | 0.1649 | 0.2485 |
59
+ | 0.8348 | 12.9 | 2000 | 0.0467 | 0.1605 | 0.2460 |
60
+ | 0.8186 | 16.13 | 2500 | 0.0469 | 0.1608 | 0.2469 |
61
+ | 0.8011 | 19.35 | 3000 | 0.1620 | 0.2412 | 0.0468 |
62
+ | 0.807 | 22.58 | 3500 | 0.1737 | 0.2524 | 0.0498 |
63
+ | 0.7758 | 25.8 | 4000 | 0.1709 | 0.2536 | 0.0498 |
64
+ | 0.7923 | 29.03 | 4500 | 0.1645 | 0.2436 | 0.0474 |
65
+ | 0.7717 | 32.26 | 5000 | 0.1811 | 0.2636 | 0.0524 |
66
+ | 0.7447 | 35.48 | 5500 | 0.1635 | 0.2405 | 0.0468 |
67
+ | 0.7267 | 38.71 | 6000 | 0.1578 | 0.2354 | 0.0462 |
68
+ | 0.7046 | 41.93 | 6500 | 0.1555 | 0.2296 | 0.0444 |
69
+ | 0.6896 | 45.16 | 7000 | 0.1548 | 0.2272 | 0.0439 |
70
+ | 0.6575 | 48.38 | 7500 | 0.1432 | 0.2096 | 0.0399 |
71
+ | 0.6264 | 51.61 | 8000 | 0.1466 | 0.2056 | 0.0398 |
72
+ | 0.589 | 54.83 | 8500 | 0.1351 | 0.1943 | 0.0371 |
73
+ | 0.573 | 58.06 | 9000 | 0.1387 | 0.1934 | 0.0365 |
74
+ | 0.5537 | 61.29 | 9500 | 0.1328 | 0.1883 | 0.0353 |
75
+ | 0.544 | 64.51 | 10000 | 0.1285 | 0.1821 | 0.0342 |
76
+
77
+
78
+ ### Framework versions
79
+
80
+ - Transformers 4.17.0.dev0
81
+ - Pytorch 1.10.2
82
+ - Datasets 1.18.4.dev0
83
+ - Tokenizers 0.11.0
added_tokens.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"<s>": 37, "</s>": 38}
all_results.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 64.51,
3
+ "eval_cer": 0.034204238520673176,
4
+ "eval_loss": 0.12852737307548523,
5
+ "eval_runtime": 199.2512,
6
+ "eval_samples": 5802,
7
+ "eval_samples_per_second": 29.119,
8
+ "eval_steps_per_second": 0.457,
9
+ "eval_wer": 0.18207560526688377,
10
+ "train_loss": 0.5247637950897217,
11
+ "train_runtime": 62085.4852,
12
+ "train_samples": 19948,
13
+ "train_samples_per_second": 20.617,
14
+ "train_steps_per_second": 0.161
15
+ }
alphabet.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"labels": [" ", "\u0430", "\u0431", "\u0432", "\u0433", "\u0434", "\u0435", "\u0436", "\u0437", "\u0438", "\u0439", "\u043a", "\u043b", "\u043c", "\u043d", "\u043e", "\u043f", "\u0440", "\u0441", "\u0442", "\u0443", "\u0444", "\u0445", "\u0446", "\u0447", "\u0448", "\u0449", "\u044c", "\u044e", "\u044f", "\u0454", "\u0456", "\u0457", "\u0491", "\u2019", "\u2047", "", "<s>", "</s>"], "is_bpe": false}
config.json ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "facebook/wav2vec2-xls-r-1b",
3
+ "activation_dropout": 0.1,
4
+ "adapter_kernel_size": 3,
5
+ "adapter_stride": 2,
6
+ "add_adapter": false,
7
+ "apply_spec_augment": true,
8
+ "architectures": [
9
+ "Wav2Vec2ForCTC"
10
+ ],
11
+ "attention_dropout": 0.0,
12
+ "bos_token_id": 1,
13
+ "classifier_proj_size": 256,
14
+ "codevector_dim": 1024,
15
+ "contrastive_logits_temperature": 0.1,
16
+ "conv_bias": true,
17
+ "conv_dim": [
18
+ 512,
19
+ 512,
20
+ 512,
21
+ 512,
22
+ 512,
23
+ 512,
24
+ 512
25
+ ],
26
+ "conv_kernel": [
27
+ 10,
28
+ 3,
29
+ 3,
30
+ 3,
31
+ 3,
32
+ 2,
33
+ 2
34
+ ],
35
+ "conv_stride": [
36
+ 5,
37
+ 2,
38
+ 2,
39
+ 2,
40
+ 2,
41
+ 2,
42
+ 2
43
+ ],
44
+ "ctc_loss_reduction": "mean",
45
+ "ctc_zero_infinity": false,
46
+ "diversity_loss_weight": 0.1,
47
+ "do_stable_layer_norm": true,
48
+ "eos_token_id": 2,
49
+ "feat_extract_activation": "gelu",
50
+ "feat_extract_dropout": 0.0,
51
+ "feat_extract_norm": "layer",
52
+ "feat_proj_dropout": 0.0,
53
+ "feat_quantizer_dropout": 0.0,
54
+ "final_dropout": 0.0,
55
+ "hidden_act": "gelu",
56
+ "hidden_dropout": 0.0,
57
+ "hidden_size": 1280,
58
+ "initializer_range": 0.02,
59
+ "intermediate_size": 5120,
60
+ "layer_norm_eps": 1e-05,
61
+ "layerdrop": 0.1,
62
+ "mask_feature_length": 64,
63
+ "mask_feature_min_masks": 0,
64
+ "mask_feature_prob": 0.25,
65
+ "mask_time_length": 10,
66
+ "mask_time_min_masks": 2,
67
+ "mask_time_prob": 0.55,
68
+ "model_type": "wav2vec2",
69
+ "num_adapter_layers": 3,
70
+ "num_attention_heads": 16,
71
+ "num_codevector_groups": 2,
72
+ "num_codevectors_per_group": 320,
73
+ "num_conv_pos_embedding_groups": 16,
74
+ "num_conv_pos_embeddings": 128,
75
+ "num_feat_extract_layers": 7,
76
+ "num_hidden_layers": 48,
77
+ "num_negatives": 100,
78
+ "output_hidden_size": 1280,
79
+ "pad_token_id": 36,
80
+ "proj_codevector_dim": 1024,
81
+ "tdnn_dilation": [
82
+ 1,
83
+ 2,
84
+ 3,
85
+ 1,
86
+ 1
87
+ ],
88
+ "tdnn_dim": [
89
+ 512,
90
+ 512,
91
+ 512,
92
+ 512,
93
+ 1500
94
+ ],
95
+ "tdnn_kernel": [
96
+ 5,
97
+ 3,
98
+ 3,
99
+ 1,
100
+ 1
101
+ ],
102
+ "torch_dtype": "float32",
103
+ "transformers_version": "4.17.0.dev0",
104
+ "use_weighted_layer_sum": false,
105
+ "vocab_size": 39,
106
+ "xvector_output_dim": 512
107
+ }
eval.py ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python3
2
+ import argparse
3
+ import re
4
+ from typing import Dict
5
+
6
+ import torch
7
+ from datasets import Audio, Dataset, load_dataset, load_metric
8
+
9
+ from transformers import AutoFeatureExtractor, pipeline, Wav2Vec2ProcessorWithLM
10
+
11
+
12
+ def log_results(result: Dataset, args: Dict[str, str]):
13
+ """DO NOT CHANGE. This function computes and logs the result metrics."""
14
+
15
+ log_outputs = args.log_outputs
16
+ dataset_id = "_".join(args.dataset.split("/") + [args.config, args.split])
17
+
18
+ # load metric
19
+ wer = load_metric("wer")
20
+ cer = load_metric("cer")
21
+
22
+ # compute metrics
23
+ wer_result = wer.compute(references=result["target"], predictions=result["prediction"])
24
+ cer_result = cer.compute(references=result["target"], predictions=result["prediction"])
25
+
26
+ # print & log results
27
+ result_str = f"WER: {wer_result}\n" f"CER: {cer_result}"
28
+ print(result_str)
29
+
30
+ with open(f"{dataset_id}_eval_results.txt", "w") as f:
31
+ f.write(result_str)
32
+
33
+ # log all results in text file. Possibly interesting for analysis
34
+ if log_outputs is not None:
35
+ pred_file = f"log_{dataset_id}_predictions.txt"
36
+ target_file = f"log_{dataset_id}_targets.txt"
37
+
38
+ with open(pred_file, "w") as p, open(target_file, "w") as t:
39
+
40
+ # mapping function to write output
41
+ def write_to_file(batch, i):
42
+ p.write(f"{i}" + "\n")
43
+ p.write(batch["prediction"] + "\n")
44
+ t.write(f"{i}" + "\n")
45
+ t.write(batch["target"] + "\n")
46
+
47
+ result.map(write_to_file, with_indices=True)
48
+
49
+
50
+ def normalize_text(text: str) -> str:
51
+ """This function normalizes the target text."""
52
+ text = re.sub("['՝՛՚‘`]", "’", text)
53
+ chars_to_remove_regex = re.compile('[\,\?\.\!\-\;\:\"\“\%\”\�«»\(\)–—…ý]')
54
+ text = re.sub(chars_to_remove_regex, '', text.lower())+" "
55
+ for a, b in zip("aceioxklmnpujы", "асеіохклмнпужи"):
56
+ text = re.sub(a, b, text)
57
+ text = " ".join(text.split())
58
+
59
+ return text
60
+
61
+
62
+ def main(args):
63
+ # load dataset
64
+ dataset = load_dataset(args.dataset, args.config, split=args.split, use_auth_token=True)
65
+
66
+ # for testing: only process the first two examples as a test
67
+ # dataset = dataset.select(range(10))
68
+
69
+ # load processor
70
+ # feature_extractor = AutoFeatureExtractor.from_pretrained(args.model_id)
71
+ # sampling_rate = feature_extractor.sampling_rate
72
+ processor = Wav2Vec2ProcessorWithLM.from_pretrained(args.model_id)
73
+
74
+ # resample audio
75
+ dataset = dataset.cast_column("audio", Audio(sampling_rate=processor.feature_extractor.sampling_rate))
76
+
77
+ # load eval pipeline
78
+ if args.device is None:
79
+ args.device = 0 if torch.cuda.is_available() else -1
80
+ asr = pipeline(
81
+ "automatic-speech-recognition", model=args.model_id, device=args.device,
82
+ feature_extractor=processor.feature_extractor, decoder=processor.decoder
83
+ )
84
+
85
+ # map function to decode audio
86
+ def map_to_pred(batch):
87
+ prediction = asr(
88
+ batch["audio"]["array"], chunk_length_s=args.chunk_length_s, stride_length_s=args.stride_length_s
89
+ )
90
+
91
+ batch["prediction"] = prediction["text"]
92
+ batch["target"] = normalize_text(batch["sentence"])
93
+ return batch
94
+
95
+ # run inference on all examples
96
+ result = dataset.map(map_to_pred, remove_columns=dataset.column_names)
97
+
98
+ # compute and log_results
99
+ # do not change function below
100
+ log_results(result, args)
101
+
102
+
103
+ if __name__ == "__main__":
104
+ parser = argparse.ArgumentParser()
105
+
106
+ parser.add_argument(
107
+ "--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
108
+ )
109
+ parser.add_argument(
110
+ "--dataset",
111
+ type=str,
112
+ required=True,
113
+ help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
114
+ )
115
+ parser.add_argument(
116
+ "--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
117
+ )
118
+ parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
119
+ parser.add_argument(
120
+ "--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
121
+ )
122
+ parser.add_argument(
123
+ "--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
124
+ )
125
+ parser.add_argument(
126
+ "--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
127
+ )
128
+ parser.add_argument(
129
+ "--device",
130
+ type=int,
131
+ default=None,
132
+ help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
133
+ )
134
+ args = parser.parse_args()
135
+
136
+ main(args)
eval_results.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 64.51,
3
+ "eval_cer": 0.034204238520673176,
4
+ "eval_loss": 0.12852737307548523,
5
+ "eval_runtime": 199.2512,
6
+ "eval_samples": 5802,
7
+ "eval_samples_per_second": 29.119,
8
+ "eval_steps_per_second": 0.457,
9
+ "eval_wer": 0.18207560526688377
10
+ }
language_model/5gram.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:019cbcf92023babd3238ae8c5b0f93b82a4d727ef602571b6c7e4a96a5eb812c
3
+ size 1848640830
language_model/attrs.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"alpha": 0.5, "beta": 1.5, "unk_score_offset": -10.0, "score_boundary": true}
language_model/unigrams.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:899fb26be366407f0b198087853d5945df7f627680c3aebbd54a7b182e481e01
3
+ size 18515524
log_mozilla-foundation_common_voice_8_0_uk_test_predictions.txt ADDED
The diff for this file is too large to render. See raw diff
 
log_mozilla-foundation_common_voice_8_0_uk_test_targets.txt ADDED
The diff for this file is too large to render. See raw diff
 
mozilla-foundation_common_voice_8_0_uk_test_eval_results.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ WER: 0.11251120864599556
2
+ CER: 0.02284734795642753
preprocessor_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_normalize": true,
3
+ "feature_extractor_type": "Wav2Vec2FeatureExtractor",
4
+ "feature_size": 1,
5
+ "padding_side": "right",
6
+ "padding_value": 0.0,
7
+ "processor_class": "Wav2Vec2ProcessorWithLM",
8
+ "return_attention_mask": true,
9
+ "sampling_rate": 16000
10
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e7ce482acb12c018f40d2be671022e2737f85e54bfc9edacc3c203ce66819ee3
3
+ size 3850512561
run.sh ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ python run_speech_recognition_ctc.py \
2
+ --dataset_name /workspace/data/uk/noizy_student_1/ \
3
+ --train_split_name train \
4
+ --model_name_or_path="facebook/wav2vec2-xls-r-1b" \
5
+ --output_dir="./" \
6
+ --max_steps 10000 \
7
+ --per_device_train_batch_size="16" \
8
+ --per_device_eval_batch_size="64" \
9
+ --gradient_accumulation_steps="8" \
10
+ --dataloader_num_workers 8 \
11
+ --learning_rate="5e-5" \
12
+ --adam_beta2 0.98 \
13
+ --lr_scheduler_type cosine \
14
+ --warmup_ratio 0.1 \
15
+ --evaluation_strategy="steps" \
16
+ --text_column_name="sentence" \
17
+ --chars_to_ignore \, \? \. \! \- \; \: \" \“ \% \‘ \” \� \' « » \( \) ՝ ՛ ՚ \– \— \… ý \
18
+ --save_steps="500" \
19
+ --eval_steps="500" \
20
+ --logging_steps="100" \
21
+ --save_total_limit 5 \
22
+ --freeze_feature_encoder \
23
+ --layerdrop="0.1" \
24
+ --activation_dropout="0.1" \
25
+ --feat_proj_dropout="0.0" \
26
+ --mask_time_prob="0.55" \
27
+ --mask_time_length="10" \
28
+ --mask_feature_prob="0.25" \
29
+ --mask_feature_length="64" \
30
+ --gradient_checkpointing \
31
+ --use_auth_token \
32
+ --fp16 \
33
+ --group_by_length \
34
+ --do_train --do_eval \
35
+ --load_best_model_at_end \
36
+ --report_to all \
37
+ --run_name="xlsr-uk-ns-1b-1" \
38
+ --wandb_project="xlsr-uk" \
39
+ --bnb --tristage_sched
run_speech_recognition_ctc.py ADDED
@@ -0,0 +1,826 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+ # coding=utf-8
3
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
4
+ #
5
+ # Licensed under the Apache License, Version 2.0 (the "License");
6
+ # you may not use this file except in compliance with the License.
7
+ # You may obtain a copy of the License at
8
+ #
9
+ # http://www.apache.org/licenses/LICENSE-2.0
10
+ #
11
+ # Unless required by applicable law or agreed to in writing, software
12
+ # distributed under the License is distributed on an "AS IS" BASIS,
13
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14
+ # See the License for the specific language governing permissions and
15
+
16
+ """ Fine-tuning a 🤗 Transformers CTC model for automatic speech recognition"""
17
+
18
+ import functools
19
+ import json
20
+ import logging
21
+ import os
22
+ import re
23
+ import sys
24
+ import warnings
25
+ from dataclasses import dataclass, field
26
+ from typing import Dict, List, Optional, Union
27
+
28
+ import datasets
29
+ import numpy as np
30
+ import torch
31
+ from torch.optim.lr_scheduler import LambdaLR
32
+ from datasets import DatasetDict, load_dataset, load_metric, load_from_disk
33
+
34
+ import bitsandbytes as bnb
35
+ import transformers
36
+ from transformers import (
37
+ AutoConfig,
38
+ AutoFeatureExtractor,
39
+ AutoModelForCTC,
40
+ AutoProcessor,
41
+ AutoTokenizer,
42
+ HfArgumentParser,
43
+ Trainer,
44
+ TrainingArguments,
45
+ Wav2Vec2Processor,
46
+ set_seed,
47
+ )
48
+ from transformers.trainer_pt_utils import get_parameter_names
49
+ from transformers.trainer_utils import get_last_checkpoint, is_main_process
50
+ from transformers.utils import check_min_version
51
+ from transformers.utils.versions import require_version
52
+
53
+
54
+ # Will error if the minimal version of Transformers is not installed. Remove at your own risks.
55
+ check_min_version("4.16.0.dev0")
56
+
57
+ require_version("datasets>=1.13.3", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
58
+
59
+
60
+ logger = logging.getLogger(__name__)
61
+
62
+
63
+ def list_field(default=None, metadata=None):
64
+ return field(default_factory=lambda: default, metadata=metadata)
65
+
66
+
67
+ @dataclass
68
+ class ModelArguments:
69
+ """
70
+ Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
71
+ """
72
+
73
+ model_name_or_path: str = field(
74
+ metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
75
+ )
76
+ tokenizer_name_or_path: Optional[str] = field(
77
+ default=None,
78
+ metadata={"help": "Path to pretrained tokenizer or tokenizer identifier from huggingface.co/models"},
79
+ )
80
+ cache_dir: Optional[str] = field(
81
+ default=None,
82
+ metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
83
+ )
84
+ freeze_feature_encoder: bool = field(
85
+ default=True, metadata={"help": "Whether to freeze the feature encoder layers of the model."}
86
+ )
87
+ attention_dropout: float = field(
88
+ default=0.0, metadata={"help": "The dropout ratio for the attention probabilities."}
89
+ )
90
+ activation_dropout: float = field(
91
+ default=0.0, metadata={"help": "The dropout ratio for activations inside the fully connected layer."}
92
+ )
93
+ feat_proj_dropout: float = field(default=0.0, metadata={"help": "The dropout ratio for the projected features."})
94
+ hidden_dropout: float = field(
95
+ default=0.0,
96
+ metadata={
97
+ "help": "The dropout probability for all fully connected layers in the embeddings, encoder, and pooler."
98
+ },
99
+ )
100
+ final_dropout: float = field(
101
+ default=0.0,
102
+ metadata={"help": "The dropout probability for the final projection layer."},
103
+ )
104
+ mask_time_prob: float = field(
105
+ default=0.05,
106
+ metadata={
107
+ "help": "Probability of each feature vector along the time axis to be chosen as the start of the vector"
108
+ "span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature"
109
+ "vectors will be masked along the time axis."
110
+ },
111
+ )
112
+ mask_time_length: int = field(
113
+ default=10,
114
+ metadata={"help": "Length of vector span to mask along the time axis."},
115
+ )
116
+ mask_feature_prob: float = field(
117
+ default=0.0,
118
+ metadata={
119
+ "help": "Probability of each feature vector along the feature axis to be chosen as the start of the vector"
120
+ "span to be masked. Approximately ``mask_feature_prob * sequence_length // mask_feature_length`` feature bins will be masked along the time axis."
121
+ },
122
+ )
123
+ mask_feature_length: int = field(
124
+ default=10,
125
+ metadata={"help": "Length of vector span to mask along the feature axis."},
126
+ )
127
+ layerdrop: float = field(default=0.0, metadata={"help": "The LayerDrop probability."})
128
+ ctc_loss_reduction: Optional[str] = field(
129
+ default="mean", metadata={"help": "The way the ctc loss should be reduced. Should be one of 'mean' or 'sum'."}
130
+ )
131
+
132
+
133
+ @dataclass
134
+ class DataTrainingArguments:
135
+ """
136
+ Arguments pertaining to what data we are going to input our model for training and eval.
137
+
138
+ Using `HfArgumentParser` we can turn this class
139
+ into argparse arguments to be able to specify them on
140
+ the command line.
141
+ """
142
+
143
+ dataset_name: str = field(
144
+ metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
145
+ )
146
+ dataset_config_name: str = field(
147
+ default=None, metadata={"help": "The configuration name of the dataset to use (via the datasets library)."}
148
+ )
149
+ train_split_name: str = field(
150
+ default="train+validation",
151
+ metadata={
152
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
153
+ },
154
+ )
155
+ eval_split_name: str = field(
156
+ default="test",
157
+ metadata={
158
+ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'"
159
+ },
160
+ )
161
+ audio_column_name: str = field(
162
+ default="audio",
163
+ metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"},
164
+ )
165
+ text_column_name: str = field(
166
+ default="text",
167
+ metadata={"help": "The name of the dataset column containing the text data. Defaults to 'text'"},
168
+ )
169
+ overwrite_cache: bool = field(
170
+ default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
171
+ )
172
+ preprocessing_num_workers: Optional[int] = field(
173
+ default=None,
174
+ metadata={"help": "The number of processes to use for the preprocessing."},
175
+ )
176
+ max_train_samples: Optional[int] = field(
177
+ default=None,
178
+ metadata={
179
+ "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
180
+ "value if set."
181
+ },
182
+ )
183
+ max_eval_samples: Optional[int] = field(
184
+ default=None,
185
+ metadata={
186
+ "help": "For debugging purposes or quicker training, truncate the number of validation examples to this "
187
+ "value if set."
188
+ },
189
+ )
190
+ chars_to_ignore: Optional[List[str]] = list_field(
191
+ default=None,
192
+ metadata={"help": "A list of characters to remove from the transcripts."},
193
+ )
194
+ eval_metrics: List[str] = list_field(
195
+ default=["wer", "cer"],
196
+ metadata={"help": "A list of metrics the model should be evaluated on. E.g. `'wer cer'`"},
197
+ )
198
+ max_duration_in_seconds: float = field(
199
+ default=20.0,
200
+ metadata={
201
+ "help": "Filter audio files that are longer than `max_duration_in_seconds` seconds to 'max_duration_in_seconds`"
202
+ },
203
+ )
204
+ min_duration_in_seconds: float = field(
205
+ default=0.0, metadata={"help": "Filter audio files that are shorter than `min_duration_in_seconds` seconds"}
206
+ )
207
+ preprocessing_only: bool = field(
208
+ default=False,
209
+ metadata={
210
+ "help": "Whether to only do data preprocessing and skip training. "
211
+ "This is especially useful when data preprocessing errors out in distributed training due to timeout. "
212
+ "In this case, one should run the preprocessing in a non-distributed setup with `preprocessing_only=True` "
213
+ "so that the cached datasets can consequently be loaded in distributed training"
214
+ },
215
+ )
216
+ use_auth_token: bool = field(
217
+ default=False,
218
+ metadata={
219
+ "help": "If :obj:`True`, will use the token generated when running"
220
+ ":obj:`transformers-cli login` as HTTP bearer authorization for remote files."
221
+ },
222
+ )
223
+ unk_token: str = field(
224
+ default="[UNK]",
225
+ metadata={"help": "The unk token for the tokenizer"},
226
+ )
227
+ pad_token: str = field(
228
+ default="[PAD]",
229
+ metadata={"help": "The padding token for the tokenizer"},
230
+ )
231
+ word_delimiter_token: str = field(
232
+ default="|",
233
+ metadata={"help": "The word delimiter token for the tokenizer"},
234
+ )
235
+ phoneme_language: Optional[str] = field(
236
+ default=None,
237
+ metadata={
238
+ "help": "The target language that should be used be"
239
+ " passed to the tokenizer for tokenization. Note that"
240
+ " this is only relevant if the model classifies the"
241
+ " input audio to a sequence of phoneme sequences."
242
+ },
243
+ )
244
+
245
+ @dataclass
246
+ class ExtraArguments:
247
+ "Additional training arguments"
248
+ bnb: bool = field(
249
+ default=False,
250
+ metadata = {"help":"If true uses 8bit Adam"}
251
+ )
252
+ tristage_sched: bool = field(
253
+ default=False,
254
+ metadata = {"help":"If true uses tristage LR scheduler (refer to XLS-R paper)"}
255
+ )
256
+ wandb_project: str = field(
257
+ default=None,
258
+ metadata = {"help":"Name of wandb project to log into"}
259
+ )
260
+
261
+
262
+ @dataclass
263
+ class DataCollatorCTCWithPadding:
264
+ """
265
+ Data collator that will dynamically pad the inputs received.
266
+ Args:
267
+ processor (:class:`~transformers.AutoProcessor`)
268
+ The processor used for proccessing the data.
269
+ padding (:obj:`bool`, :obj:`str` or :class:`~transformers.tokenization_utils_base.PaddingStrategy`, `optional`, defaults to :obj:`True`):
270
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding index)
271
+ among:
272
+ * :obj:`True` or :obj:`'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
273
+ sequence if provided).
274
+ * :obj:`'max_length'`: Pad to a maximum length specified with the argument :obj:`max_length` or to the
275
+ maximum acceptable input length for the model if that argument is not provided.
276
+ * :obj:`False` or :obj:`'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of
277
+ different lengths).
278
+ max_length (:obj:`int`, `optional`):
279
+ Maximum length of the ``input_values`` of the returned list and optionally padding length (see above).
280
+ max_length_labels (:obj:`int`, `optional`):
281
+ Maximum length of the ``labels`` returned list and optionally padding length (see above).
282
+ pad_to_multiple_of (:obj:`int`, `optional`):
283
+ If set will pad the sequence to a multiple of the provided value.
284
+ This is especially useful to enable the use of Tensor Cores on NVIDIA hardware with compute capability >=
285
+ 7.5 (Volta).
286
+ """
287
+
288
+ processor: AutoProcessor
289
+ padding: Union[bool, str] = "longest"
290
+ pad_to_multiple_of: Optional[int] = None
291
+ pad_to_multiple_of_labels: Optional[int] = None
292
+
293
+ def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, torch.Tensor]:
294
+ # split inputs and labels since they have to be of different lenghts and need
295
+ # different padding methods
296
+ input_features = [{"input_values": feature["input_values"]} for feature in features]
297
+ label_features = [{"input_ids": feature["labels"]} for feature in features]
298
+
299
+ batch = self.processor.pad(
300
+ input_features,
301
+ padding=self.padding,
302
+ pad_to_multiple_of=self.pad_to_multiple_of,
303
+ return_tensors="pt",
304
+ )
305
+
306
+ with self.processor.as_target_processor():
307
+ labels_batch = self.processor.pad(
308
+ label_features,
309
+ padding=self.padding,
310
+ pad_to_multiple_of=self.pad_to_multiple_of_labels,
311
+ return_tensors="pt",
312
+ )
313
+
314
+ # replace padding with -100 to ignore loss correctly
315
+ labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100)
316
+
317
+ batch["labels"] = labels
318
+
319
+ return batch
320
+
321
+
322
+ def get_tri_stage_schedule(
323
+ optimizer, num_training_steps, ratios=[0.1, 0.4, 0.5], num_warmup_steps=None, num_hold_steps=None, start_ratio=0.01, end_ratio=0.05
324
+ ):
325
+ assert (num_warmup_steps is None) == (num_hold_steps is None)
326
+ if num_warmup_steps is None:
327
+ num_warmup_steps = int(ratios[0]*num_training_steps)
328
+ num_hold_steps = int(ratios[1]*num_training_steps)
329
+ start_decay_step = num_warmup_steps + num_hold_steps
330
+ a_w, b_w = (1-start_ratio)/num_warmup_steps, start_ratio
331
+ num_decay_steps = num_training_steps - start_decay_step
332
+ a_d, b_d = (end_ratio-1)/num_decay_steps, 1.
333
+
334
+ def lr_lambda(current_step):
335
+ if current_step < num_warmup_steps:
336
+ return a_w * float(current_step) + b_w
337
+ if current_step < start_decay_step:
338
+ return 1.
339
+ return max(end_ratio, a_d * float(current_step - start_decay_step) + b_d )
340
+
341
+ return LambdaLR(optimizer, lr_lambda)
342
+
343
+ def create_vocabulary_from_data(
344
+ datasets: DatasetDict,
345
+ word_delimiter_token: Optional[str] = None,
346
+ unk_token: Optional[str] = None,
347
+ pad_token: Optional[str] = None,
348
+ ):
349
+ # Given training and test labels create vocabulary
350
+ def extract_all_chars(batch):
351
+ all_text = " ".join(batch["target_text"])
352
+ vocab = list(set(all_text))
353
+ return {"vocab": [vocab], "all_text": [all_text]}
354
+
355
+ vocabs = datasets.map(
356
+ extract_all_chars,
357
+ batched=True,
358
+ batch_size=-1,
359
+ keep_in_memory=True,
360
+ remove_columns=datasets["train"].column_names,
361
+ )
362
+
363
+ # take union of all unique characters in each dataset
364
+ vocab_set = functools.reduce(
365
+ lambda vocab_1, vocab_2: set(vocab_1["vocab"][0]) | set(vocab_2["vocab"][0]), vocabs.values()
366
+ )
367
+
368
+ vocab_dict = {v: k for k, v in enumerate(sorted(list(vocab_set)))}
369
+
370
+ # replace white space with delimiter token
371
+ if word_delimiter_token is not None:
372
+ vocab_dict[word_delimiter_token] = vocab_dict[" "]
373
+ del vocab_dict[" "]
374
+
375
+ # add unk and pad token
376
+ if unk_token is not None:
377
+ vocab_dict[unk_token] = len(vocab_dict)
378
+
379
+ if pad_token is not None:
380
+ vocab_dict[pad_token] = len(vocab_dict)
381
+
382
+ return vocab_dict
383
+
384
+
385
+ def main():
386
+ # See all possible arguments in src/transformers/training_args.py
387
+ # or by passing the --help flag to this script.
388
+ # We now keep distinct sets of args, for a cleaner separation of concerns.
389
+
390
+ parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments, ExtraArguments))
391
+ if len(sys.argv) == 2 and sys.argv[1].endswith(".json"):
392
+ # If we pass only one argument to the script and it's the path to a json file,
393
+ # let's parse it to get our arguments.
394
+ model_args, data_args, training_args, extra_args = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1]))
395
+ else:
396
+ model_args, data_args, training_args, extra_args = parser.parse_args_into_dataclasses()
397
+
398
+ # Detecting last checkpoint.
399
+ last_checkpoint = None
400
+ if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
401
+ last_checkpoint = get_last_checkpoint(training_args.output_dir)
402
+ if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
403
+ raise ValueError(
404
+ f"Output directory ({training_args.output_dir}) already exists and is not empty. "
405
+ "Use --overwrite_output_dir to overcome."
406
+ )
407
+ elif last_checkpoint is not None:
408
+ logger.info(
409
+ f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
410
+ "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
411
+ )
412
+
413
+ # Setup logging
414
+ logging.basicConfig(
415
+ format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
416
+ datefmt="%m/%d/%Y %H:%M:%S",
417
+ handlers=[logging.StreamHandler(sys.stdout)],
418
+ )
419
+ logger.setLevel(logging.INFO if is_main_process(training_args.local_rank) else logging.WARN)
420
+
421
+ # Log on each process the small summary:
422
+ logger.warning(
423
+ f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
424
+ f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
425
+ )
426
+ # Set the verbosity to info of the Transformers logger (on main process only):
427
+ if is_main_process(training_args.local_rank):
428
+ transformers.utils.logging.set_verbosity_info()
429
+ logger.info("Training/evaluation parameters %s", training_args)
430
+
431
+ # Set seed before initializing model.
432
+ set_seed(training_args.seed)
433
+
434
+ # configure wandb run
435
+ os.environ["WANDB_PROJECT"] = extra_args.wandb_project
436
+
437
+ # 1. First, let's load the dataset
438
+ raw_datasets = DatasetDict()
439
+
440
+ if training_args.do_train:
441
+ if data_args.dataset_name.endswith("/"):
442
+ raw_datasets["train"] = load_from_disk(f"{data_args.dataset_name}/{data_args.train_split_name}")
443
+ else:
444
+ raw_datasets["train"] = load_dataset(
445
+ data_args.dataset_name,
446
+ data_args.dataset_config_name,
447
+ split=data_args.train_split_name,
448
+ use_auth_token=data_args.use_auth_token,
449
+ )
450
+
451
+ if data_args.audio_column_name not in raw_datasets["train"].column_names:
452
+ raise ValueError(
453
+ f"--audio_column_name '{data_args.audio_column_name}' not found in dataset '{data_args.dataset_name}'. "
454
+ "Make sure to set `--audio_column_name` to the correct audio column - one of "
455
+ f"{', '.join(raw_datasets['train'].column_names)}."
456
+ )
457
+
458
+ if data_args.text_column_name not in raw_datasets["train"].column_names:
459
+ raise ValueError(
460
+ f"--text_column_name {data_args.text_column_name} not found in dataset '{data_args.dataset_name}'. "
461
+ "Make sure to set `--text_column_name` to the correct text column - one of "
462
+ f"{', '.join(raw_datasets['train'].column_names)}."
463
+ )
464
+
465
+ if data_args.max_train_samples is not None:
466
+ raw_datasets["train"] = raw_datasets["train"].select(range(data_args.max_train_samples))
467
+
468
+ if training_args.do_eval:
469
+ if data_args.dataset_name.endswith("/"):
470
+ raw_datasets["eval"] = load_from_disk(f"{data_args.dataset_name}/{data_args.eval_split_name}")
471
+ else:
472
+ raw_datasets["eval"] = load_dataset(
473
+ data_args.dataset_name,
474
+ data_args.dataset_config_name,
475
+ split=data_args.eval_split_name,
476
+ use_auth_token=data_args.use_auth_token,
477
+ )
478
+
479
+ if data_args.max_eval_samples is not None:
480
+ raw_datasets["eval"] = raw_datasets["eval"].select(range(data_args.max_eval_samples))
481
+
482
+
483
+ # 2. We remove some special characters from the datasets
484
+ # that make training complicated and do not help in transcribing the speech
485
+ # E.g. characters, such as `,` and `.` do not really have an acoustic characteristic
486
+ # that could be easily picked up by the model
487
+ chars_to_ignore_regex = (
488
+ f'[{"".join(data_args.chars_to_ignore)}]' if data_args.chars_to_ignore is not None else None
489
+ )
490
+ text_column_name = data_args.text_column_name
491
+
492
+ def remove_special_characters(batch):
493
+ text = batch[text_column_name]
494
+ # normalize apostrophe first
495
+ text = re.sub("['՝՛՚‘`]", "’", text)
496
+ if chars_to_ignore_regex is not None:
497
+ text = re.sub(chars_to_ignore_regex, "", text.lower()) + " "
498
+ else:
499
+ text = text.lower() + " "
500
+ for a, b in zip("aceioxklmnpujы", "асеіохклмнпужи"):
501
+ text = re.sub(a, b, text)
502
+ batch["target_text"] = text
503
+ return batch
504
+
505
+ with training_args.main_process_first(desc="dataset map special characters removal"):
506
+ raw_datasets = raw_datasets.map(
507
+ remove_special_characters,
508
+ remove_columns=[text_column_name],
509
+ desc="remove special characters from datasets",
510
+ )
511
+
512
+ # save special tokens for tokenizer
513
+ word_delimiter_token = data_args.word_delimiter_token
514
+ unk_token = data_args.unk_token
515
+ pad_token = data_args.pad_token
516
+
517
+ # 3. Next, let's load the config as we might need it to create
518
+ # the tokenizer
519
+ # load config
520
+ config = AutoConfig.from_pretrained(
521
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
522
+ )
523
+
524
+ # 4. Next, if no tokenizer file is defined,
525
+ # we create the vocabulary of the model by extracting all unique characters from
526
+ # the training and evaluation datasets
527
+ # We need to make sure that only first rank saves vocabulary
528
+ # make sure all processes wait until vocab is created
529
+ tokenizer_name_or_path = model_args.tokenizer_name_or_path
530
+ tokenizer_kwargs = {}
531
+ if tokenizer_name_or_path is None:
532
+ # save vocab in training output dir
533
+ tokenizer_name_or_path = training_args.output_dir
534
+
535
+ vocab_file = os.path.join(tokenizer_name_or_path, "vocab.json")
536
+
537
+ with training_args.main_process_first():
538
+ if training_args.overwrite_output_dir and os.path.isfile(vocab_file):
539
+ os.remove(vocab_file)
540
+
541
+ with training_args.main_process_first(desc="dataset map vocabulary creation"):
542
+ if not os.path.isfile(vocab_file):
543
+ os.makedirs(tokenizer_name_or_path, exist_ok=True)
544
+ vocab_dict = create_vocabulary_from_data(
545
+ raw_datasets,
546
+ word_delimiter_token=word_delimiter_token,
547
+ unk_token=unk_token,
548
+ pad_token=pad_token,
549
+ )
550
+
551
+ # save vocab dict to be loaded into tokenizer
552
+ with open(vocab_file, "w") as file:
553
+ json.dump(vocab_dict, file)
554
+
555
+ # if tokenizer has just been created
556
+ # it is defined by `tokenizer_class` if present in config else by `model_type`
557
+ tokenizer_kwargs = {
558
+ "config": config if config.tokenizer_class is not None else None,
559
+ "tokenizer_type": config.model_type if config.tokenizer_class is None else None,
560
+ "unk_token": unk_token,
561
+ "pad_token": pad_token,
562
+ "word_delimiter_token": word_delimiter_token,
563
+ }
564
+
565
+ # 5. Now we can instantiate the feature extractor, tokenizer and model
566
+ # Note for distributed training, the .from_pretrained methods guarantee that only
567
+ # one local process can concurrently download model & vocab.
568
+
569
+ # load feature_extractor and tokenizer
570
+ tokenizer = AutoTokenizer.from_pretrained(
571
+ tokenizer_name_or_path,
572
+ use_auth_token=data_args.use_auth_token,
573
+ **tokenizer_kwargs,
574
+ )
575
+ feature_extractor = AutoFeatureExtractor.from_pretrained(
576
+ model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_auth_token=data_args.use_auth_token
577
+ )
578
+
579
+ # adapt config
580
+ config.update(
581
+ {
582
+ "feat_proj_dropout": model_args.feat_proj_dropout,
583
+ "attention_dropout": model_args.attention_dropout,
584
+ "hidden_dropout": model_args.hidden_dropout,
585
+ "final_dropout": model_args.final_dropout,
586
+ "mask_time_prob": model_args.mask_time_prob,
587
+ "mask_time_length": model_args.mask_time_length,
588
+ "mask_feature_prob": model_args.mask_feature_prob,
589
+ "mask_feature_length": model_args.mask_feature_length,
590
+ "gradient_checkpointing": training_args.gradient_checkpointing,
591
+ "layerdrop": model_args.layerdrop,
592
+ "ctc_loss_reduction": model_args.ctc_loss_reduction,
593
+ "pad_token_id": tokenizer.pad_token_id,
594
+ "vocab_size": len(tokenizer),
595
+ "activation_dropout": model_args.activation_dropout,
596
+ }
597
+ )
598
+
599
+ # create model
600
+ model = AutoModelForCTC.from_pretrained(
601
+ model_args.model_name_or_path,
602
+ cache_dir=model_args.cache_dir,
603
+ config=config,
604
+ use_auth_token=data_args.use_auth_token,
605
+ )
606
+
607
+ # freeze encoder
608
+ if model_args.freeze_feature_encoder:
609
+ model.freeze_feature_encoder()
610
+
611
+ # 6. Now we preprocess the datasets including loading the audio, resampling and normalization
612
+ # Thankfully, `datasets` takes care of automatically loading and resampling the audio,
613
+ # so that we just need to set the correct target sampling rate and normalize the input
614
+ # via the `feature_extractor`
615
+
616
+ # make sure that dataset decodes audio with correct sampling rate
617
+ dataset_sampling_rate = next(iter(raw_datasets.values())).features[data_args.audio_column_name].sampling_rate
618
+ if dataset_sampling_rate != feature_extractor.sampling_rate:
619
+ raw_datasets = raw_datasets.cast_column(
620
+ data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate)
621
+ )
622
+
623
+ # derive max & min input length for sample rate & max duration
624
+ max_input_length = data_args.max_duration_in_seconds * feature_extractor.sampling_rate
625
+ min_input_length = data_args.min_duration_in_seconds * feature_extractor.sampling_rate
626
+ audio_column_name = data_args.audio_column_name
627
+ num_workers = data_args.preprocessing_num_workers
628
+
629
+ # `phoneme_language` is only relevant if the model is fine-tuned on phoneme classification
630
+ phoneme_language = data_args.phoneme_language
631
+
632
+ # Preprocessing the datasets.
633
+ # We need to read the audio files as arrays and tokenize the targets.
634
+ def prepare_dataset(batch):
635
+ # load audio
636
+ sample = batch[audio_column_name]
637
+
638
+ inputs = feature_extractor(sample["array"], sampling_rate=sample["sampling_rate"])
639
+ batch["input_values"] = inputs.input_values[0]
640
+ batch["length"] = len(batch["input_values"])
641
+
642
+ # encode targets
643
+ additional_kwargs = {}
644
+ if phoneme_language is not None:
645
+ additional_kwargs["phonemizer_lang"] = phoneme_language
646
+
647
+ batch["labels"] = tokenizer(batch["target_text"], **additional_kwargs).input_ids
648
+ return batch
649
+
650
+ with training_args.main_process_first(desc="dataset map preprocessing"):
651
+ vectorized_datasets = raw_datasets.map(
652
+ prepare_dataset,
653
+ remove_columns=next(iter(raw_datasets.values())).column_names,
654
+ num_proc=num_workers,
655
+ desc="preprocess datasets",
656
+ )
657
+
658
+ def is_audio_in_length_range(length):
659
+ return length > min_input_length and length < max_input_length
660
+
661
+ # filter data that is shorter than min_input_length
662
+ vectorized_datasets = vectorized_datasets.filter(
663
+ is_audio_in_length_range,
664
+ num_proc=num_workers,
665
+ input_columns=["length"],
666
+ )
667
+
668
+ # 7. Next, we can prepare the training.
669
+ # Let's use word error rate (WER) as our evaluation metric,
670
+ # instantiate a data collator and the trainer
671
+
672
+ # Define evaluation metrics during training, *i.e.* word error rate, character error rate
673
+ eval_metrics = {metric: load_metric(metric) for metric in data_args.eval_metrics}
674
+
675
+ # for large datasets it is advised to run the preprocessing on a
676
+ # single machine first with ``args.preprocessing_only`` since there will mostly likely
677
+ # be a timeout when running the script in distributed mode.
678
+ # In a second step ``args.preprocessing_only`` can then be set to `False` to load the
679
+ # cached dataset
680
+ if data_args.preprocessing_only:
681
+ logger.info(f"Data preprocessing finished. Files cached at {vectorized_datasets.cache_files}")
682
+ return
683
+
684
+ def compute_metrics(pred):
685
+ pred_logits = pred.predictions
686
+ pred_ids = np.argmax(pred_logits, axis=-1)
687
+
688
+ pred.label_ids[pred.label_ids == -100] = tokenizer.pad_token_id
689
+
690
+ pred_str = tokenizer.batch_decode(pred_ids)
691
+ # we do not want to group tokens when computing the metrics
692
+ label_str = tokenizer.batch_decode(pred.label_ids, group_tokens=False)
693
+
694
+ metrics = {k: v.compute(predictions=pred_str, references=label_str) for k, v in eval_metrics.items()}
695
+
696
+ return metrics
697
+
698
+ # Now save everything to be able to create a single processor later
699
+ if is_main_process(training_args.local_rank):
700
+ # save feature extractor, tokenizer and config
701
+ feature_extractor.save_pretrained(training_args.output_dir)
702
+ tokenizer.save_pretrained(training_args.output_dir)
703
+ config.save_pretrained(training_args.output_dir)
704
+
705
+ try:
706
+ processor = AutoProcessor.from_pretrained(training_args.output_dir)
707
+ except (OSError, KeyError):
708
+ warnings.warn(
709
+ "Loading a processor from a feature extractor config that does not"
710
+ " include a `processor_class` attribute is deprecated and will be removed in v5. Please add the following "
711
+ " attribute to your `preprocessor_config.json` file to suppress this warning: "
712
+ " `'processor_class': 'Wav2Vec2Processor'`",
713
+ FutureWarning,
714
+ )
715
+ processor = Wav2Vec2Processor.from_pretrained(training_args.output_dir)
716
+
717
+ # Instantiate custom data collator
718
+ data_collator = DataCollatorCTCWithPadding(processor=processor)
719
+
720
+ decay_parameters = get_parameter_names(model, [torch.nn.LayerNorm])
721
+ decay_parameters = [name for name in decay_parameters if "bias" not in name]
722
+ optimizer_grouped_parameters = [
723
+ {
724
+ "params": [p for n, p in model.named_parameters() if n in decay_parameters],
725
+ "weight_decay": training_args.weight_decay,
726
+ },
727
+ {
728
+ "params": [p for n, p in model.named_parameters() if n not in decay_parameters],
729
+ "weight_decay": 0.0,
730
+ },
731
+ ]
732
+ if extra_args.bnb:
733
+ optimizer = bnb.optim.Adam8bit(
734
+ params=optimizer_grouped_parameters,
735
+ lr=training_args.learning_rate,
736
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
737
+ eps=training_args.adam_epsilon,
738
+ )
739
+ else:
740
+ optimizer = torch.optim.AdamW(
741
+ params=optimizer_grouped_parameters,
742
+ lr=training_args.learning_rate,
743
+ betas=(training_args.adam_beta1, training_args.adam_beta2),
744
+ eps=training_args.adam_epsilon,
745
+ )
746
+ if extra_args.tristage_sched:
747
+ scheduler = get_tri_stage_schedule(optimizer, training_args.max_steps)
748
+ else:
749
+ scheduler = None
750
+ optimizers = (optimizer, scheduler)
751
+
752
+ # Initialize Trainer
753
+ trainer = Trainer(
754
+ model=model,
755
+ data_collator=data_collator,
756
+ args=training_args,
757
+ compute_metrics=compute_metrics,
758
+ train_dataset=vectorized_datasets["train"] if training_args.do_train else None,
759
+ eval_dataset=vectorized_datasets["eval"] if training_args.do_eval else None,
760
+ tokenizer=feature_extractor,
761
+ optimizers=optimizers,
762
+ )
763
+
764
+ # 8. Finally, we can start training
765
+
766
+ # Training
767
+ if training_args.do_train:
768
+
769
+ # use last checkpoint if exist
770
+ if last_checkpoint is not None:
771
+ checkpoint = last_checkpoint
772
+ elif os.path.isdir(model_args.model_name_or_path):
773
+ checkpoint = model_args.model_name_or_path
774
+ else:
775
+ checkpoint = None
776
+
777
+ train_result = trainer.train(resume_from_checkpoint=checkpoint)
778
+ trainer.save_model()
779
+
780
+ metrics = train_result.metrics
781
+ max_train_samples = (
782
+ data_args.max_train_samples
783
+ if data_args.max_train_samples is not None
784
+ else len(vectorized_datasets["train"])
785
+ )
786
+ metrics["train_samples"] = min(max_train_samples, len(vectorized_datasets["train"]))
787
+
788
+ trainer.log_metrics("train", metrics)
789
+ trainer.save_metrics("train", metrics)
790
+ trainer.save_state()
791
+
792
+ # Evaluation
793
+ results = {}
794
+ if training_args.do_eval:
795
+ logger.info("*** Evaluate ***")
796
+ metrics = trainer.evaluate()
797
+ max_eval_samples = (
798
+ data_args.max_eval_samples if data_args.max_eval_samples is not None else len(vectorized_datasets["eval"])
799
+ )
800
+ metrics["eval_samples"] = min(max_eval_samples, len(vectorized_datasets["eval"]))
801
+
802
+ trainer.log_metrics("eval", metrics)
803
+ trainer.save_metrics("eval", metrics)
804
+
805
+ # Write model card and (optionally) push to hub
806
+ config_name = data_args.dataset_config_name if data_args.dataset_config_name is not None else "na"
807
+ kwargs = {
808
+ "finetuned_from": model_args.model_name_or_path,
809
+ "tasks": "speech-recognition",
810
+ "tags": ["automatic-speech-recognition", data_args.dataset_name],
811
+ "dataset_args": f"Config: {config_name}, Training split: {data_args.train_split_name}, Eval split: {data_args.eval_split_name}",
812
+ "dataset": f"{data_args.dataset_name.upper()} - {config_name.upper()}",
813
+ }
814
+ if "common_voice" in data_args.dataset_name:
815
+ kwargs["language"] = config_name
816
+
817
+ if training_args.push_to_hub:
818
+ trainer.push_to_hub(**kwargs)
819
+ else:
820
+ trainer.create_model_card(**kwargs)
821
+
822
+ return results
823
+
824
+
825
+ if __name__ == "__main__":
826
+ main()
runs/Feb03_18-41-15_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643913972.3215802/events.out.tfevents.1643913972.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.619480.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a60649bce923eebe70e2c4cc5ce1d031bb3760c97387bdfd16a8d84552ad5494
3
+ size 4772
runs/Feb03_18-41-15_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643913972.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.619480.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9ca03af7643fbc8fe146fb7d1c9ca52ca67eec2dacce377a728f43174bd54f0
3
+ size 10450
runs/Feb04_00-36-56_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643935272.2024918/events.out.tfevents.1643935272.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.756120.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d7329ab88d8a010e5067d426564b02d783ebb2232c5f3776f565d232a1285a7d
3
+ size 4772
runs/Feb04_00-36-56_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643935272.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.756120.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:878030952491612d8289fe5356cb918395e0343466e27ac882cc3f4529c00884
3
+ size 4703
runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/1643935834.3797746/events.out.tfevents.1643935834.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.1 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95897a228dcfdbfbcd10fd7b8c8f51c0609ba1dba0218346c71d994a55e694bf
3
+ size 4772
runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643935834.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2820cbf962a3a32c1d6e6c35392c83535b7468f5abefba41c9ce01479fa42db7
3
+ size 22308
runs/Feb04_00-46-19_job-680ae191-b2c7-4b97-adaf-cb186b6c96a6/events.out.tfevents.1643998124.job-680ae191-b2c7-4b97-adaf-cb186b6c96a6.760309.2 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:02bf652741f8266899eeb0892319192fc92f38ca8c59dbdb1990be25f1fbf8a5
3
+ size 405
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "[UNK]", "pad_token": "[PAD]", "additional_special_tokens": [{"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "<s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}, {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true}]}
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"unk_token": "[UNK]", "bos_token": "<s>", "eos_token": "</s>", "pad_token": "[PAD]", "do_lower_case": false, "word_delimiter_token": "|", "special_tokens_map_file": null, "tokenizer_file": null, "name_or_path": "./", "tokenizer_class": "Wav2Vec2CTCTokenizer"}
train_results.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "epoch": 64.51,
3
+ "train_loss": 0.5247637950897217,
4
+ "train_runtime": 62085.4852,
5
+ "train_samples": 19948,
6
+ "train_samples_per_second": 20.617,
7
+ "train_steps_per_second": 0.161
8
+ }
trainer_state.json ADDED
@@ -0,0 +1,825 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": 0.12852737307548523,
3
+ "best_model_checkpoint": "./checkpoint-10000",
4
+ "epoch": 64.51323175621492,
5
+ "global_step": 10000,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.64,
12
+ "learning_rate": 8.4824e-06,
13
+ "loss": 6.9402,
14
+ "step": 100
15
+ },
16
+ {
17
+ "epoch": 1.29,
18
+ "learning_rate": 1.6402400000000004e-05,
19
+ "loss": 3.2608,
20
+ "step": 200
21
+ },
22
+ {
23
+ "epoch": 1.93,
24
+ "learning_rate": 2.4322400000000003e-05,
25
+ "loss": 2.4251,
26
+ "step": 300
27
+ },
28
+ {
29
+ "epoch": 2.58,
30
+ "learning_rate": 3.22424e-05,
31
+ "loss": 1.4757,
32
+ "step": 400
33
+ },
34
+ {
35
+ "epoch": 3.22,
36
+ "learning_rate": 4.01624e-05,
37
+ "loss": 1.2323,
38
+ "step": 500
39
+ },
40
+ {
41
+ "epoch": 3.22,
42
+ "eval_cer": 0.07965777210531003,
43
+ "eval_loss": 0.28158774971961975,
44
+ "eval_runtime": 197.0167,
45
+ "eval_samples_per_second": 29.449,
46
+ "eval_steps_per_second": 0.462,
47
+ "eval_wer": 0.41325687856906884,
48
+ "step": 500
49
+ },
50
+ {
51
+ "epoch": 3.87,
52
+ "learning_rate": 4.80824e-05,
53
+ "loss": 1.1608,
54
+ "step": 600
55
+ },
56
+ {
57
+ "epoch": 4.51,
58
+ "learning_rate": 5.600240000000001e-05,
59
+ "loss": 1.1297,
60
+ "step": 700
61
+ },
62
+ {
63
+ "epoch": 5.16,
64
+ "learning_rate": 6.39224e-05,
65
+ "loss": 1.0738,
66
+ "step": 800
67
+ },
68
+ {
69
+ "epoch": 5.8,
70
+ "learning_rate": 7.184240000000001e-05,
71
+ "loss": 1.0863,
72
+ "step": 900
73
+ },
74
+ {
75
+ "epoch": 6.45,
76
+ "learning_rate": 7.97624e-05,
77
+ "loss": 0.9826,
78
+ "step": 1000
79
+ },
80
+ {
81
+ "epoch": 6.45,
82
+ "eval_cer": 0.05135273515182096,
83
+ "eval_loss": 0.19702914357185364,
84
+ "eval_runtime": 195.781,
85
+ "eval_samples_per_second": 29.635,
86
+ "eval_steps_per_second": 0.465,
87
+ "eval_wer": 0.26877153239888624,
88
+ "step": 1000
89
+ },
90
+ {
91
+ "epoch": 7.1,
92
+ "learning_rate": 8e-05,
93
+ "loss": 0.9708,
94
+ "step": 1100
95
+ },
96
+ {
97
+ "epoch": 7.74,
98
+ "learning_rate": 8e-05,
99
+ "loss": 0.917,
100
+ "step": 1200
101
+ },
102
+ {
103
+ "epoch": 8.38,
104
+ "learning_rate": 8e-05,
105
+ "loss": 0.888,
106
+ "step": 1300
107
+ },
108
+ {
109
+ "epoch": 9.03,
110
+ "learning_rate": 8e-05,
111
+ "loss": 0.9048,
112
+ "step": 1400
113
+ },
114
+ {
115
+ "epoch": 9.67,
116
+ "learning_rate": 8e-05,
117
+ "loss": 0.8628,
118
+ "step": 1500
119
+ },
120
+ {
121
+ "epoch": 9.67,
122
+ "eval_cer": 0.04743848505535603,
123
+ "eval_loss": 0.16490551829338074,
124
+ "eval_runtime": 196.0899,
125
+ "eval_samples_per_second": 29.588,
126
+ "eval_steps_per_second": 0.464,
127
+ "eval_wer": 0.24850158100901412,
128
+ "step": 1500
129
+ },
130
+ {
131
+ "epoch": 10.32,
132
+ "learning_rate": 8e-05,
133
+ "loss": 0.8616,
134
+ "step": 1600
135
+ },
136
+ {
137
+ "epoch": 10.96,
138
+ "learning_rate": 8e-05,
139
+ "loss": 0.8517,
140
+ "step": 1700
141
+ },
142
+ {
143
+ "epoch": 11.61,
144
+ "learning_rate": 8e-05,
145
+ "loss": 0.8455,
146
+ "step": 1800
147
+ },
148
+ {
149
+ "epoch": 12.26,
150
+ "learning_rate": 8e-05,
151
+ "loss": 0.8436,
152
+ "step": 1900
153
+ },
154
+ {
155
+ "epoch": 12.9,
156
+ "learning_rate": 8e-05,
157
+ "loss": 0.8348,
158
+ "step": 2000
159
+ },
160
+ {
161
+ "epoch": 12.9,
162
+ "eval_cer": 0.046703867501706686,
163
+ "eval_loss": 0.16045768558979034,
164
+ "eval_runtime": 196.1747,
165
+ "eval_samples_per_second": 29.576,
166
+ "eval_steps_per_second": 0.464,
167
+ "eval_wer": 0.24604747746472228,
168
+ "step": 2000
169
+ },
170
+ {
171
+ "epoch": 13.55,
172
+ "learning_rate": 8e-05,
173
+ "loss": 0.844,
174
+ "step": 2100
175
+ },
176
+ {
177
+ "epoch": 14.19,
178
+ "learning_rate": 8e-05,
179
+ "loss": 0.8369,
180
+ "step": 2200
181
+ },
182
+ {
183
+ "epoch": 14.83,
184
+ "learning_rate": 8e-05,
185
+ "loss": 0.8241,
186
+ "step": 2300
187
+ },
188
+ {
189
+ "epoch": 15.48,
190
+ "learning_rate": 8e-05,
191
+ "loss": 0.8235,
192
+ "step": 2400
193
+ },
194
+ {
195
+ "epoch": 16.13,
196
+ "learning_rate": 8e-05,
197
+ "loss": 0.8186,
198
+ "step": 2500
199
+ },
200
+ {
201
+ "epoch": 16.13,
202
+ "eval_cer": 0.04690421774361105,
203
+ "eval_loss": 0.1608021855354309,
204
+ "eval_runtime": 196.173,
205
+ "eval_samples_per_second": 29.576,
206
+ "eval_steps_per_second": 0.464,
207
+ "eval_wer": 0.24692057199490303,
208
+ "step": 2500
209
+ },
210
+ {
211
+ "epoch": 16.77,
212
+ "learning_rate": 8e-05,
213
+ "loss": 0.8355,
214
+ "step": 2600
215
+ },
216
+ {
217
+ "epoch": 17.42,
218
+ "learning_rate": 8e-05,
219
+ "loss": 0.8157,
220
+ "step": 2700
221
+ },
222
+ {
223
+ "epoch": 18.06,
224
+ "learning_rate": 8e-05,
225
+ "loss": 0.8175,
226
+ "step": 2800
227
+ },
228
+ {
229
+ "epoch": 18.71,
230
+ "learning_rate": 8e-05,
231
+ "loss": 0.801,
232
+ "step": 2900
233
+ },
234
+ {
235
+ "epoch": 19.35,
236
+ "learning_rate": 8e-05,
237
+ "loss": 0.8011,
238
+ "step": 3000
239
+ },
240
+ {
241
+ "epoch": 19.35,
242
+ "eval_cer": 0.046789201863999284,
243
+ "eval_loss": 0.1620311141014099,
244
+ "eval_runtime": 197.3892,
245
+ "eval_samples_per_second": 29.394,
246
+ "eval_steps_per_second": 0.461,
247
+ "eval_wer": 0.24118646467506724,
248
+ "step": 3000
249
+ },
250
+ {
251
+ "epoch": 19.99,
252
+ "learning_rate": 8e-05,
253
+ "loss": 0.7888,
254
+ "step": 3100
255
+ },
256
+ {
257
+ "epoch": 20.64,
258
+ "learning_rate": 8e-05,
259
+ "loss": 0.8008,
260
+ "step": 3200
261
+ },
262
+ {
263
+ "epoch": 21.29,
264
+ "learning_rate": 8e-05,
265
+ "loss": 0.8197,
266
+ "step": 3300
267
+ },
268
+ {
269
+ "epoch": 21.93,
270
+ "learning_rate": 8e-05,
271
+ "loss": 0.8065,
272
+ "step": 3400
273
+ },
274
+ {
275
+ "epoch": 22.58,
276
+ "learning_rate": 8e-05,
277
+ "loss": 0.807,
278
+ "step": 3500
279
+ },
280
+ {
281
+ "epoch": 22.58,
282
+ "eval_cer": 0.049805586061559465,
283
+ "eval_loss": 0.17369326949119568,
284
+ "eval_runtime": 196.0869,
285
+ "eval_samples_per_second": 29.589,
286
+ "eval_steps_per_second": 0.464,
287
+ "eval_wer": 0.252395110670631,
288
+ "step": 3500
289
+ },
290
+ {
291
+ "epoch": 23.22,
292
+ "learning_rate": 8e-05,
293
+ "loss": 0.8045,
294
+ "step": 3600
295
+ },
296
+ {
297
+ "epoch": 23.87,
298
+ "learning_rate": 8e-05,
299
+ "loss": 0.7925,
300
+ "step": 3700
301
+ },
302
+ {
303
+ "epoch": 24.51,
304
+ "learning_rate": 8e-05,
305
+ "loss": 0.8046,
306
+ "step": 3800
307
+ },
308
+ {
309
+ "epoch": 25.16,
310
+ "learning_rate": 8e-05,
311
+ "loss": 0.8102,
312
+ "step": 3900
313
+ },
314
+ {
315
+ "epoch": 25.8,
316
+ "learning_rate": 8e-05,
317
+ "loss": 0.7758,
318
+ "step": 4000
319
+ },
320
+ {
321
+ "epoch": 25.8,
322
+ "eval_cer": 0.04979074530289988,
323
+ "eval_loss": 0.1708839237689972,
324
+ "eval_runtime": 196.4196,
325
+ "eval_samples_per_second": 29.539,
326
+ "eval_steps_per_second": 0.463,
327
+ "eval_wer": 0.2535985652933126,
328
+ "step": 4000
329
+ },
330
+ {
331
+ "epoch": 26.45,
332
+ "learning_rate": 8e-05,
333
+ "loss": 0.7968,
334
+ "step": 4100
335
+ },
336
+ {
337
+ "epoch": 27.1,
338
+ "learning_rate": 8e-05,
339
+ "loss": 0.7904,
340
+ "step": 4200
341
+ },
342
+ {
343
+ "epoch": 27.74,
344
+ "learning_rate": 8e-05,
345
+ "loss": 0.8001,
346
+ "step": 4300
347
+ },
348
+ {
349
+ "epoch": 28.38,
350
+ "learning_rate": 8e-05,
351
+ "loss": 0.7869,
352
+ "step": 4400
353
+ },
354
+ {
355
+ "epoch": 29.03,
356
+ "learning_rate": 8e-05,
357
+ "loss": 0.7923,
358
+ "step": 4500
359
+ },
360
+ {
361
+ "epoch": 29.03,
362
+ "eval_cer": 0.04736799145172301,
363
+ "eval_loss": 0.16446976363658905,
364
+ "eval_runtime": 196.4759,
365
+ "eval_samples_per_second": 29.53,
366
+ "eval_steps_per_second": 0.463,
367
+ "eval_wer": 0.24356977677096606,
368
+ "step": 4500
369
+ },
370
+ {
371
+ "epoch": 29.67,
372
+ "learning_rate": 8e-05,
373
+ "loss": 0.772,
374
+ "step": 4600
375
+ },
376
+ {
377
+ "epoch": 30.32,
378
+ "learning_rate": 8e-05,
379
+ "loss": 0.7702,
380
+ "step": 4700
381
+ },
382
+ {
383
+ "epoch": 30.96,
384
+ "learning_rate": 8e-05,
385
+ "loss": 0.7797,
386
+ "step": 4800
387
+ },
388
+ {
389
+ "epoch": 31.61,
390
+ "learning_rate": 8e-05,
391
+ "loss": 0.7759,
392
+ "step": 4900
393
+ },
394
+ {
395
+ "epoch": 32.26,
396
+ "learning_rate": 8e-05,
397
+ "loss": 0.7717,
398
+ "step": 5000
399
+ },
400
+ {
401
+ "epoch": 32.26,
402
+ "eval_cer": 0.052350776171677896,
403
+ "eval_loss": 0.1811000257730484,
404
+ "eval_runtime": 196.7068,
405
+ "eval_samples_per_second": 29.496,
406
+ "eval_steps_per_second": 0.463,
407
+ "eval_wer": 0.26355656236726605,
408
+ "step": 5000
409
+ },
410
+ {
411
+ "epoch": 32.9,
412
+ "learning_rate": 7.852560000000001e-05,
413
+ "loss": 0.7608,
414
+ "step": 5100
415
+ },
416
+ {
417
+ "epoch": 33.55,
418
+ "learning_rate": 7.700560000000001e-05,
419
+ "loss": 0.763,
420
+ "step": 5200
421
+ },
422
+ {
423
+ "epoch": 34.19,
424
+ "learning_rate": 7.54856e-05,
425
+ "loss": 0.7712,
426
+ "step": 5300
427
+ },
428
+ {
429
+ "epoch": 34.83,
430
+ "learning_rate": 7.39656e-05,
431
+ "loss": 0.7478,
432
+ "step": 5400
433
+ },
434
+ {
435
+ "epoch": 35.48,
436
+ "learning_rate": 7.24456e-05,
437
+ "loss": 0.7447,
438
+ "step": 5500
439
+ },
440
+ {
441
+ "epoch": 35.48,
442
+ "eval_cer": 0.04679662224332908,
443
+ "eval_loss": 0.16353937983512878,
444
+ "eval_runtime": 196.1767,
445
+ "eval_samples_per_second": 29.575,
446
+ "eval_steps_per_second": 0.464,
447
+ "eval_wer": 0.2404785501911369,
448
+ "step": 5500
449
+ },
450
+ {
451
+ "epoch": 36.13,
452
+ "learning_rate": 7.09256e-05,
453
+ "loss": 0.7544,
454
+ "step": 5600
455
+ },
456
+ {
457
+ "epoch": 36.77,
458
+ "learning_rate": 6.94056e-05,
459
+ "loss": 0.7438,
460
+ "step": 5700
461
+ },
462
+ {
463
+ "epoch": 37.42,
464
+ "learning_rate": 6.79008e-05,
465
+ "loss": 0.742,
466
+ "step": 5800
467
+ },
468
+ {
469
+ "epoch": 38.06,
470
+ "learning_rate": 6.638080000000001e-05,
471
+ "loss": 0.7441,
472
+ "step": 5900
473
+ },
474
+ {
475
+ "epoch": 38.71,
476
+ "learning_rate": 6.486080000000001e-05,
477
+ "loss": 0.7267,
478
+ "step": 6000
479
+ },
480
+ {
481
+ "epoch": 38.71,
482
+ "eval_cer": 0.046236383603929836,
483
+ "eval_loss": 0.15783575177192688,
484
+ "eval_runtime": 197.1092,
485
+ "eval_samples_per_second": 29.435,
486
+ "eval_steps_per_second": 0.462,
487
+ "eval_wer": 0.23542876020576714,
488
+ "step": 6000
489
+ },
490
+ {
491
+ "epoch": 39.35,
492
+ "learning_rate": 6.33408e-05,
493
+ "loss": 0.7112,
494
+ "step": 6100
495
+ },
496
+ {
497
+ "epoch": 39.99,
498
+ "learning_rate": 6.18208e-05,
499
+ "loss": 0.7052,
500
+ "step": 6200
501
+ },
502
+ {
503
+ "epoch": 40.64,
504
+ "learning_rate": 6.0300800000000004e-05,
505
+ "loss": 0.7105,
506
+ "step": 6300
507
+ },
508
+ {
509
+ "epoch": 41.29,
510
+ "learning_rate": 5.878080000000001e-05,
511
+ "loss": 0.7107,
512
+ "step": 6400
513
+ },
514
+ {
515
+ "epoch": 41.93,
516
+ "learning_rate": 5.72608e-05,
517
+ "loss": 0.7046,
518
+ "step": 6500
519
+ },
520
+ {
521
+ "epoch": 41.93,
522
+ "eval_cer": 0.044429521237125645,
523
+ "eval_loss": 0.15552951395511627,
524
+ "eval_runtime": 196.7222,
525
+ "eval_samples_per_second": 29.493,
526
+ "eval_steps_per_second": 0.463,
527
+ "eval_wer": 0.22957666713860966,
528
+ "step": 6500
529
+ },
530
+ {
531
+ "epoch": 42.58,
532
+ "learning_rate": 5.574080000000001e-05,
533
+ "loss": 0.7035,
534
+ "step": 6600
535
+ },
536
+ {
537
+ "epoch": 43.22,
538
+ "learning_rate": 5.422080000000001e-05,
539
+ "loss": 0.6967,
540
+ "step": 6700
541
+ },
542
+ {
543
+ "epoch": 43.87,
544
+ "learning_rate": 5.271600000000001e-05,
545
+ "loss": 0.687,
546
+ "step": 6800
547
+ },
548
+ {
549
+ "epoch": 44.51,
550
+ "learning_rate": 5.1196e-05,
551
+ "loss": 0.6875,
552
+ "step": 6900
553
+ },
554
+ {
555
+ "epoch": 45.16,
556
+ "learning_rate": 4.967600000000001e-05,
557
+ "loss": 0.6896,
558
+ "step": 7000
559
+ },
560
+ {
561
+ "epoch": 45.16,
562
+ "eval_cer": 0.043932355822029624,
563
+ "eval_loss": 0.15479956567287445,
564
+ "eval_runtime": 196.5953,
565
+ "eval_samples_per_second": 29.512,
566
+ "eval_steps_per_second": 0.463,
567
+ "eval_wer": 0.2271697578932465,
568
+ "step": 7000
569
+ },
570
+ {
571
+ "epoch": 45.8,
572
+ "learning_rate": 4.8156000000000004e-05,
573
+ "loss": 0.6722,
574
+ "step": 7100
575
+ },
576
+ {
577
+ "epoch": 46.45,
578
+ "learning_rate": 4.663600000000001e-05,
579
+ "loss": 0.6816,
580
+ "step": 7200
581
+ },
582
+ {
583
+ "epoch": 47.1,
584
+ "learning_rate": 4.5116000000000006e-05,
585
+ "loss": 0.6658,
586
+ "step": 7300
587
+ },
588
+ {
589
+ "epoch": 47.74,
590
+ "learning_rate": 4.359600000000001e-05,
591
+ "loss": 0.6507,
592
+ "step": 7400
593
+ },
594
+ {
595
+ "epoch": 48.38,
596
+ "learning_rate": 4.207600000000001e-05,
597
+ "loss": 0.6575,
598
+ "step": 7500
599
+ },
600
+ {
601
+ "epoch": 48.38,
602
+ "eval_cer": 0.03991422041494761,
603
+ "eval_loss": 0.14319901168346405,
604
+ "eval_runtime": 196.3465,
605
+ "eval_samples_per_second": 29.55,
606
+ "eval_steps_per_second": 0.463,
607
+ "eval_wer": 0.2096370758412384,
608
+ "step": 7500
609
+ },
610
+ {
611
+ "epoch": 49.03,
612
+ "learning_rate": 4.0556e-05,
613
+ "loss": 0.6524,
614
+ "step": 7600
615
+ },
616
+ {
617
+ "epoch": 49.67,
618
+ "learning_rate": 3.9036000000000004e-05,
619
+ "loss": 0.6336,
620
+ "step": 7700
621
+ },
622
+ {
623
+ "epoch": 50.32,
624
+ "learning_rate": 3.751600000000001e-05,
625
+ "loss": 0.6335,
626
+ "step": 7800
627
+ },
628
+ {
629
+ "epoch": 50.96,
630
+ "learning_rate": 3.5996000000000006e-05,
631
+ "loss": 0.6356,
632
+ "step": 7900
633
+ },
634
+ {
635
+ "epoch": 51.61,
636
+ "learning_rate": 3.447600000000001e-05,
637
+ "loss": 0.6264,
638
+ "step": 8000
639
+ },
640
+ {
641
+ "epoch": 51.61,
642
+ "eval_cer": 0.039750972069692206,
643
+ "eval_loss": 0.14660798013210297,
644
+ "eval_runtime": 197.4423,
645
+ "eval_samples_per_second": 29.386,
646
+ "eval_steps_per_second": 0.461,
647
+ "eval_wer": 0.20560196328283542,
648
+ "step": 8000
649
+ },
650
+ {
651
+ "epoch": 52.26,
652
+ "learning_rate": 3.295600000000001e-05,
653
+ "loss": 0.6151,
654
+ "step": 8100
655
+ },
656
+ {
657
+ "epoch": 52.9,
658
+ "learning_rate": 3.1436e-05,
659
+ "loss": 0.6138,
660
+ "step": 8200
661
+ },
662
+ {
663
+ "epoch": 53.55,
664
+ "learning_rate": 2.9916000000000003e-05,
665
+ "loss": 0.6066,
666
+ "step": 8300
667
+ },
668
+ {
669
+ "epoch": 54.19,
670
+ "learning_rate": 2.839600000000001e-05,
671
+ "loss": 0.6091,
672
+ "step": 8400
673
+ },
674
+ {
675
+ "epoch": 54.83,
676
+ "learning_rate": 2.687600000000001e-05,
677
+ "loss": 0.589,
678
+ "step": 8500
679
+ },
680
+ {
681
+ "epoch": 54.83,
682
+ "eval_cer": 0.03713528835594076,
683
+ "eval_loss": 0.1351083666086197,
684
+ "eval_runtime": 196.1992,
685
+ "eval_samples_per_second": 29.572,
686
+ "eval_steps_per_second": 0.464,
687
+ "eval_wer": 0.19427533153994997,
688
+ "step": 8500
689
+ },
690
+ {
691
+ "epoch": 55.48,
692
+ "learning_rate": 2.5356000000000006e-05,
693
+ "loss": 0.59,
694
+ "step": 8600
695
+ },
696
+ {
697
+ "epoch": 56.13,
698
+ "learning_rate": 2.3836000000000007e-05,
699
+ "loss": 0.5954,
700
+ "step": 8700
701
+ },
702
+ {
703
+ "epoch": 56.77,
704
+ "learning_rate": 2.2316000000000005e-05,
705
+ "loss": 0.5886,
706
+ "step": 8800
707
+ },
708
+ {
709
+ "epoch": 57.42,
710
+ "learning_rate": 2.0796000000000002e-05,
711
+ "loss": 0.5923,
712
+ "step": 8900
713
+ },
714
+ {
715
+ "epoch": 58.06,
716
+ "learning_rate": 1.927600000000001e-05,
717
+ "loss": 0.573,
718
+ "step": 9000
719
+ },
720
+ {
721
+ "epoch": 58.06,
722
+ "eval_cer": 0.03653794781989255,
723
+ "eval_loss": 0.13869842886924744,
724
+ "eval_runtime": 197.6459,
725
+ "eval_samples_per_second": 29.356,
726
+ "eval_steps_per_second": 0.46,
727
+ "eval_wer": 0.19342583415923356,
728
+ "step": 9000
729
+ },
730
+ {
731
+ "epoch": 58.71,
732
+ "learning_rate": 1.7756000000000008e-05,
733
+ "loss": 0.5681,
734
+ "step": 9100
735
+ },
736
+ {
737
+ "epoch": 59.35,
738
+ "learning_rate": 1.623600000000001e-05,
739
+ "loss": 0.5749,
740
+ "step": 9200
741
+ },
742
+ {
743
+ "epoch": 59.99,
744
+ "learning_rate": 1.4716000000000006e-05,
745
+ "loss": 0.5649,
746
+ "step": 9300
747
+ },
748
+ {
749
+ "epoch": 60.64,
750
+ "learning_rate": 1.3196000000000004e-05,
751
+ "loss": 0.5649,
752
+ "step": 9400
753
+ },
754
+ {
755
+ "epoch": 61.29,
756
+ "learning_rate": 1.1676000000000003e-05,
757
+ "loss": 0.5537,
758
+ "step": 9500
759
+ },
760
+ {
761
+ "epoch": 61.29,
762
+ "eval_cer": 0.035276483333828025,
763
+ "eval_loss": 0.132797509431839,
764
+ "eval_runtime": 197.1347,
765
+ "eval_samples_per_second": 29.432,
766
+ "eval_steps_per_second": 0.462,
767
+ "eval_wer": 0.18825805842654209,
768
+ "step": 9500
769
+ },
770
+ {
771
+ "epoch": 61.93,
772
+ "learning_rate": 1.015600000000001e-05,
773
+ "loss": 0.5551,
774
+ "step": 9600
775
+ },
776
+ {
777
+ "epoch": 62.58,
778
+ "learning_rate": 8.636000000000008e-06,
779
+ "loss": 0.5563,
780
+ "step": 9700
781
+ },
782
+ {
783
+ "epoch": 63.22,
784
+ "learning_rate": 7.116000000000008e-06,
785
+ "loss": 0.5469,
786
+ "step": 9800
787
+ },
788
+ {
789
+ "epoch": 63.87,
790
+ "learning_rate": 5.596000000000006e-06,
791
+ "loss": 0.5431,
792
+ "step": 9900
793
+ },
794
+ {
795
+ "epoch": 64.51,
796
+ "learning_rate": 4.076000000000005e-06,
797
+ "loss": 0.544,
798
+ "step": 10000
799
+ },
800
+ {
801
+ "epoch": 64.51,
802
+ "eval_cer": 0.034204238520673176,
803
+ "eval_loss": 0.12852737307548523,
804
+ "eval_runtime": 197.3431,
805
+ "eval_samples_per_second": 29.401,
806
+ "eval_steps_per_second": 0.461,
807
+ "eval_wer": 0.18207560526688377,
808
+ "step": 10000
809
+ },
810
+ {
811
+ "epoch": 64.51,
812
+ "step": 10000,
813
+ "total_flos": 6.715892353150186e+20,
814
+ "train_loss": 0.5247637950897217,
815
+ "train_runtime": 62085.4852,
816
+ "train_samples_per_second": 20.617,
817
+ "train_steps_per_second": 0.161
818
+ }
819
+ ],
820
+ "max_steps": 10000,
821
+ "num_train_epochs": 65,
822
+ "total_flos": 6.715892353150186e+20,
823
+ "trial_name": null,
824
+ "trial_params": null
825
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:004085d8188230d36e53e873905f4d0b969a1ce5224f8a4bcbea3db77af402c8
3
+ size 3055
vocab.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"а": 1, "б": 2, "в": 3, "г": 4, "д": 5, "е": 6, "ж": 7, "з": 8, "и": 9, "й": 10, "к": 11, "л": 12, "м": 13, "н": 14, "о": 15, "п": 16, "р": 17, "с": 18, "т": 19, "у": 20, "ф": 21, "х": 22, "ц": 23, "ч": 24, "ш": 25, "щ": 26, "ь": 27, "ю": 28, "я": 29, "є": 30, "і": 31, "ї": 32, "ґ": 33, "’": 34, "|": 0, "[UNK]": 35, "[PAD]": 36}