|
* Requirements |
|
#+begin_src conf :tangle ./requirements.txt |
|
einops |
|
pillow |
|
prodigyopt |
|
tensorboard |
|
timm |
|
torch |
|
torchvision |
|
#+end_src |
|
|
|
* Download trained model |
|
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh |
|
"efficient_download.sh" \ |
|
'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/Model_80.pth' \ |
|
'Model_80.pth' \ |
|
'6ca28df33ba8476ac13be329a1b1b8b390da5d8042638fb124df3c067c2fe45bccde4366643b830066cbe0164ddbb978a1987a398b4a987f99d908903b44774f' \ |
|
"${HOME}/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth" \ |
|
; |
|
#+end_src |
|
|
|
* Swin code |
|
|
|
** swin.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py |
|
import os |
|
os.environ["CUDA_VISIBLE_DEVICES"] ='0' |
|
#+end_src |
|
|
|
** swin.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py |
|
import numpy as np |
|
#+end_src |
|
|
|
** swin.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint as checkpoint |
|
#+end_src |
|
|
|
** swin.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py |
|
from timm.models import load_checkpoint |
|
from timm.models.layers import DropPath |
|
from timm.models.layers import to_2tuple |
|
from timm.models.layers import trunc_normal_ |
|
|
|
# from mmdet.utils import get_root_logger |
|
#+end_src |
|
|
|
** swin.function.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py |
|
def window_partition(x, window_size): |
|
""" |
|
Args: |
|
x: (B, H, W, C) |
|
window_size (int): window size |
|
|
|
Returns: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
""" |
|
B, H, W, C = x.shape |
|
x = x.view(B, H // window_size, window_size, W // window_size, window_size, |
|
C) |
|
windows = x.permute(0, 1, 3, 2, 4, |
|
5).contiguous().view(-1, window_size, window_size, C) |
|
return windows |
|
|
|
|
|
def window_reverse(windows, window_size, H, W): |
|
""" |
|
Args: |
|
windows: (num_windows*B, window_size, window_size, C) |
|
window_size (int): Window size |
|
H (int): Height of image |
|
W (int): Width of image |
|
|
|
Returns: |
|
x: (B, H, W, C) |
|
""" |
|
B = int(windows.shape[0] / (H * W / window_size / window_size)) |
|
x = windows.view(B, H // window_size, W // window_size, window_size, |
|
window_size, -1) |
|
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1) |
|
return x |
|
|
|
|
|
def SwinT(pretrained=True): |
|
model = SwinTransformer(embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7) |
|
# if pretrained is True: |
|
# model.load_state_dict(torch.load( |
|
# 'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth', |
|
# map_location='cpu')['model'], |
|
# strict=False) |
|
|
|
return model |
|
|
|
|
|
def SwinS(pretrained=True): |
|
model = SwinTransformer(embed_dim=96, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7) |
|
# if pretrained is True: |
|
# model.load_state_dict(torch.load( |
|
# 'data/backbone_ckpt/swin_small_patch4_window7_224.pth', |
|
# map_location='cpu')['model'], |
|
# strict=False) |
|
|
|
return model |
|
|
|
|
|
def SwinB(pretrained=True): |
|
model = SwinTransformer(embed_dim=128, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[4, 8, 16, 32], |
|
window_size=12) |
|
# if pretrained is True: |
|
# model.load_state_dict( |
|
# torch.load('./swin_base_patch4_window12_384_22kto1k.pth', |
|
# map_location='cpu')['model'], |
|
# strict=False) |
|
|
|
return model |
|
|
|
|
|
def SwinL(pretrained=True): |
|
model = SwinTransformer(embed_dim=192, |
|
depths=[2, 2, 18, 2], |
|
num_heads=[6, 12, 24, 48], |
|
window_size=12) |
|
# if pretrained is True: |
|
# model.load_state_dict(torch.load( |
|
# 'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth', |
|
# map_location='cpu')['model'], |
|
# strict=False) |
|
|
|
return model |
|
#+end_src |
|
|
|
** swin.class.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py |
|
class Mlp(nn.Module): |
|
""" Multilayer perceptron.""" |
|
|
|
def __init__(self, |
|
in_features, |
|
hidden_features=None, |
|
out_features=None, |
|
act_layer=nn.GELU, |
|
drop=0.): |
|
super().__init__() |
|
out_features = out_features or in_features |
|
hidden_features = hidden_features or in_features |
|
self.fc1 = nn.Linear(in_features, hidden_features) |
|
self.act = act_layer() |
|
self.fc2 = nn.Linear(hidden_features, out_features) |
|
self.drop = nn.Dropout(drop) |
|
|
|
def forward(self, x): |
|
x = self.fc1(x) |
|
x = self.act(x) |
|
x = self.drop(x) |
|
x = self.fc2(x) |
|
x = self.drop(x) |
|
return x |
|
|
|
|
|
class WindowAttention(nn.Module): |
|
""" Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
qk_scale=None, |
|
attn_drop=0., |
|
proj_drop=0.): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size # Wh, Ww |
|
self.num_heads = num_heads |
|
head_dim = dim // num_heads |
|
self.scale = qk_scale or head_dim**-0.5 |
|
|
|
# define a parameter table of relative position bias |
|
self.relative_position_bias_table = nn.Parameter( |
|
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), |
|
num_heads)) # 2*Wh-1 * 2*Ww-1, nH |
|
|
|
# get pair-wise relative position index for each token inside the window |
|
coords_h = torch.arange(self.window_size[0]) |
|
coords_w = torch.arange(self.window_size[1]) |
|
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww |
|
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww |
|
relative_coords = coords_flatten[:, :, |
|
None] - coords_flatten[:, |
|
None, :] # 2, Wh*Ww, Wh*Ww |
|
relative_coords = relative_coords.permute( |
|
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 |
|
relative_coords[:, :, |
|
0] += self.window_size[0] - 1 # shift to start from 0 |
|
relative_coords[:, :, 1] += self.window_size[1] - 1 |
|
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1 |
|
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww |
|
self.register_buffer("relative_position_index", |
|
relative_position_index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
trunc_normal_(self.relative_position_bias_table, std=.02) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" Forward function. |
|
|
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, |
|
C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[ |
|
2] # make torchscript happy (cannot use tensor as tuple) |
|
|
|
q = q * self.scale |
|
attn = (q @ k.transpose(-2, -1)) |
|
|
|
relative_position_bias = self.relative_position_bias_table[ |
|
self.relative_position_index.view(-1)].view( |
|
self.window_size[0] * self.window_size[1], |
|
self.window_size[0] * self.window_size[1], |
|
-1) # Wh*Ww,Wh*Ww,nH |
|
relative_position_bias = relative_position_bias.permute( |
|
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww |
|
attn = attn + relative_position_bias.unsqueeze(0) |
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, |
|
N) + mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
attn = self.softmax(attn) |
|
else: |
|
attn = self.softmax(attn) |
|
|
|
attn = self.attn_drop(attn) |
|
|
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class SwinTransformerBlock(nn.Module): |
|
""" Swin Transformer Block. |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" |
|
|
|
self.norm1 = norm_layer(dim) |
|
self.attn = WindowAttention(dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
attn_drop=attn_drop, |
|
proj_drop=drop) |
|
|
|
self.drop_path = DropPath( |
|
drop_path) if drop_path > 0. else nn.Identity() |
|
self.norm2 = norm_layer(dim) |
|
mlp_hidden_dim = int(dim * mlp_ratio) |
|
self.mlp = Mlp(in_features=dim, |
|
hidden_features=mlp_hidden_dim, |
|
act_layer=act_layer, |
|
drop=drop) |
|
|
|
self.H = None |
|
self.W = None |
|
|
|
def forward(self, x, mask_matrix): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
mask_matrix: Attention mask for cyclic shift. |
|
""" |
|
B, L, C = x.shape |
|
H, W = self.H, self.W |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
shortcut = x |
|
x = self.norm1(x) |
|
x = x.view(B, H, W, C) |
|
|
|
# pad feature maps to multiples of window size |
|
pad_l = pad_t = 0 |
|
pad_r = (self.window_size - W % self.window_size) % self.window_size |
|
pad_b = (self.window_size - H % self.window_size) % self.window_size |
|
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b)) |
|
_, Hp, Wp, _ = x.shape |
|
|
|
# cyclic shift |
|
if self.shift_size > 0: |
|
shifted_x = torch.roll(x, |
|
shifts=(-self.shift_size, -self.shift_size), |
|
dims=(1, 2)) |
|
attn_mask = mask_matrix |
|
else: |
|
shifted_x = x |
|
attn_mask = None |
|
|
|
# partition windows |
|
x_windows = window_partition( |
|
shifted_x, self.window_size) # nW*B, window_size, window_size, C |
|
x_windows = x_windows.view(-1, self.window_size * self.window_size, |
|
C) # nW*B, window_size*window_size, C |
|
|
|
# W-MSA/SW-MSA |
|
attn_windows = self.attn( |
|
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C |
|
|
|
# merge windows |
|
attn_windows = attn_windows.view(-1, self.window_size, |
|
self.window_size, C) |
|
shifted_x = window_reverse(attn_windows, self.window_size, Hp, |
|
Wp) # B H' W' C |
|
|
|
# reverse cyclic shift |
|
if self.shift_size > 0: |
|
x = torch.roll(shifted_x, |
|
shifts=(self.shift_size, self.shift_size), |
|
dims=(1, 2)) |
|
else: |
|
x = shifted_x |
|
|
|
if pad_r > 0 or pad_b > 0: |
|
x = x[:, :H, :W, :].contiguous() |
|
|
|
x = x.view(B, H * W, C) |
|
|
|
# FFN |
|
x = shortcut + self.drop_path(x) |
|
x = x + self.drop_path(self.mlp(self.norm2(x))) |
|
|
|
return x |
|
|
|
|
|
class PatchMerging(nn.Module): |
|
""" Patch Merging Layer |
|
|
|
Args: |
|
dim (int): Number of input channels. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
""" |
|
|
|
def __init__(self, dim, norm_layer=nn.LayerNorm): |
|
super().__init__() |
|
self.dim = dim |
|
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) |
|
self.norm = norm_layer(4 * dim) |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
B, L, C = x.shape |
|
assert L == H * W, "input feature has wrong size" |
|
|
|
x = x.view(B, H, W, C) |
|
|
|
# padding |
|
pad_input = (H % 2 == 1) or (W % 2 == 1) |
|
if pad_input: |
|
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2)) |
|
|
|
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C |
|
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C |
|
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C |
|
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C |
|
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C |
|
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C |
|
|
|
x = self.norm(x) |
|
x = self.reduction(x) |
|
|
|
return x |
|
|
|
|
|
class BasicLayer(nn.Module): |
|
""" A basic Swin Transformer layer for one stage. |
|
|
|
Args: |
|
dim (int): Number of feature channels |
|
depth (int): Depths of this stage. |
|
num_heads (int): Number of attention head. |
|
window_size (int): Local window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
dim, |
|
depth, |
|
num_heads, |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop=0., |
|
attn_drop=0., |
|
drop_path=0., |
|
norm_layer=nn.LayerNorm, |
|
downsample=None, |
|
use_checkpoint=False): |
|
super().__init__() |
|
self.window_size = window_size |
|
self.shift_size = window_size // 2 |
|
self.depth = depth |
|
self.use_checkpoint = use_checkpoint |
|
|
|
# build blocks |
|
self.blocks = nn.ModuleList([ |
|
SwinTransformerBlock(dim=dim, |
|
num_heads=num_heads, |
|
window_size=window_size, |
|
shift_size=0 if |
|
(i % 2 == 0) else window_size // 2, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop, |
|
attn_drop=attn_drop, |
|
drop_path=drop_path[i] if isinstance( |
|
drop_path, list) else drop_path, |
|
norm_layer=norm_layer) for i in range(depth) |
|
]) |
|
|
|
# patch merging layer |
|
if downsample is not None: |
|
self.downsample = downsample(dim=dim, norm_layer=norm_layer) |
|
else: |
|
self.downsample = None |
|
|
|
def forward(self, x, H, W): |
|
""" Forward function. |
|
|
|
Args: |
|
x: Input feature, tensor size (B, H*W, C). |
|
H, W: Spatial resolution of the input feature. |
|
""" |
|
|
|
# calculate attention mask for SW-MSA |
|
Hp = int(np.ceil(H / self.window_size)) * self.window_size |
|
Wp = int(np.ceil(W / self.window_size)) * self.window_size |
|
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1 |
|
h_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, |
|
-self.shift_size), slice(-self.shift_size, None)) |
|
w_slices = (slice(0, -self.window_size), |
|
slice(-self.window_size, |
|
-self.shift_size), slice(-self.shift_size, None)) |
|
cnt = 0 |
|
for h in h_slices: |
|
for w in w_slices: |
|
img_mask[:, h, w, :] = cnt |
|
cnt += 1 |
|
|
|
mask_windows = window_partition( |
|
img_mask, self.window_size) # nW, window_size, window_size, 1 |
|
mask_windows = mask_windows.view(-1, |
|
self.window_size * self.window_size) |
|
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) |
|
attn_mask = attn_mask.masked_fill(attn_mask != 0, |
|
float(-100.0)).masked_fill( |
|
attn_mask == 0, float(0.0)) |
|
|
|
for blk in self.blocks: |
|
blk.H, blk.W = H, W |
|
if self.use_checkpoint: |
|
x = checkpoint.checkpoint(blk, x, attn_mask) |
|
else: |
|
x = blk(x, attn_mask) |
|
if self.downsample is not None: |
|
x_down = self.downsample(x, H, W) |
|
Wh, Ww = (H + 1) // 2, (W + 1) // 2 |
|
return x, H, W, x_down, Wh, Ww |
|
else: |
|
return x, H, W, x, H, W |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" Image to Patch Embedding |
|
|
|
Args: |
|
patch_size (int): Patch token size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
norm_layer (nn.Module, optional): Normalization layer. Default: None |
|
""" |
|
|
|
def __init__(self, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
norm_layer=None): |
|
super().__init__() |
|
patch_size = to_2tuple(patch_size) |
|
self.patch_size = patch_size |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.proj = nn.Conv2d(in_chans, |
|
embed_dim, |
|
kernel_size=patch_size, |
|
stride=patch_size) |
|
if norm_layer is not None: |
|
self.norm = norm_layer(embed_dim) |
|
else: |
|
self.norm = None |
|
|
|
def forward(self, x): |
|
"""Forward function.""" |
|
# padding |
|
_, _, H, W = x.size() |
|
if W % self.patch_size[1] != 0: |
|
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1])) |
|
if H % self.patch_size[0] != 0: |
|
x = F.pad(x, |
|
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0])) |
|
|
|
x = self.proj(x) # B C Wh Ww |
|
if self.norm is not None: |
|
Wh, Ww = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformer(nn.Module): |
|
""" Swin Transformer backbone. |
|
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` - |
|
https://arxiv.org/pdf/2103.14030 |
|
|
|
Args: |
|
pretrain_img_size (int): Input image size for training the pretrained model, |
|
used in absolute postion embedding. Default 224. |
|
patch_size (int | tuple(int)): Patch size. Default: 4. |
|
in_chans (int): Number of input image channels. Default: 3. |
|
embed_dim (int): Number of linear projection output channels. Default: 96. |
|
depths (tuple[int]): Depths of each Swin Transformer stage. |
|
num_heads (tuple[int]): Number of attention head of each stage. |
|
window_size (int): Window size. Default: 7. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4. |
|
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True |
|
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. |
|
drop_rate (float): Dropout rate. |
|
attn_drop_rate (float): Attention dropout rate. Default: 0. |
|
drop_path_rate (float): Stochastic depth rate. Default: 0.2. |
|
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm. |
|
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False. |
|
patch_norm (bool): If True, add normalization after patch embedding. Default: True. |
|
out_indices (Sequence[int]): Output from which stages. |
|
frozen_stages (int): Stages to be frozen (stop grad and set eval mode). |
|
-1 means not freezing any parameters. |
|
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False. |
|
""" |
|
|
|
def __init__(self, |
|
pretrain_img_size=224, |
|
patch_size=4, |
|
in_chans=3, |
|
embed_dim=96, |
|
depths=[2, 2, 6, 2], |
|
num_heads=[3, 6, 12, 24], |
|
window_size=7, |
|
mlp_ratio=4., |
|
qkv_bias=True, |
|
qk_scale=None, |
|
drop_rate=0., |
|
attn_drop_rate=0., |
|
drop_path_rate=0.2, |
|
norm_layer=nn.LayerNorm, |
|
ape=False, |
|
patch_norm=True, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=-1, |
|
use_checkpoint=False): |
|
super().__init__() |
|
|
|
self.pretrain_img_size = pretrain_img_size |
|
self.num_layers = len(depths) |
|
self.embed_dim = embed_dim |
|
self.ape = ape |
|
self.patch_norm = patch_norm |
|
self.out_indices = out_indices |
|
self.frozen_stages = frozen_stages |
|
|
|
# split image into non-overlapping patches |
|
self.patch_embed = PatchEmbed( |
|
patch_size=patch_size, |
|
in_chans=in_chans, |
|
embed_dim=embed_dim, |
|
norm_layer=norm_layer if self.patch_norm else None) |
|
|
|
# absolute position embedding |
|
if self.ape: |
|
pretrain_img_size = to_2tuple(pretrain_img_size) |
|
patch_size = to_2tuple(patch_size) |
|
patches_resolution = [ |
|
pretrain_img_size[0] // patch_size[0], |
|
pretrain_img_size[1] // patch_size[1] |
|
] |
|
|
|
self.absolute_pos_embed = nn.Parameter( |
|
torch.zeros(1, embed_dim, patches_resolution[0], |
|
patches_resolution[1])) |
|
trunc_normal_(self.absolute_pos_embed, std=.02) |
|
|
|
self.pos_drop = nn.Dropout(p=drop_rate) |
|
|
|
# stochastic depth |
|
dpr = [ |
|
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths)) |
|
] # stochastic depth decay rule |
|
|
|
# build layers |
|
self.layers = nn.ModuleList() |
|
for i_layer in range(self.num_layers): |
|
layer = BasicLayer( |
|
dim=int(embed_dim * 2**i_layer), |
|
depth=depths[i_layer], |
|
num_heads=num_heads[i_layer], |
|
window_size=window_size, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
qk_scale=qk_scale, |
|
drop=drop_rate, |
|
attn_drop=attn_drop_rate, |
|
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])], |
|
norm_layer=norm_layer, |
|
downsample=PatchMerging if |
|
(i_layer < self.num_layers - 1) else None, |
|
use_checkpoint=use_checkpoint) |
|
self.layers.append(layer) |
|
|
|
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)] |
|
self.num_features = num_features |
|
|
|
# add a norm layer for each output |
|
for i_layer in out_indices: |
|
layer = norm_layer(num_features[i_layer]) |
|
layer_name = f'norm{i_layer}' |
|
self.add_module(layer_name, layer) |
|
|
|
self._freeze_stages() |
|
|
|
def _freeze_stages(self): |
|
if self.frozen_stages >= 0: |
|
self.patch_embed.eval() |
|
for param in self.patch_embed.parameters(): |
|
param.requires_grad = False |
|
|
|
if self.frozen_stages >= 1 and self.ape: |
|
self.absolute_pos_embed.requires_grad = False |
|
|
|
if self.frozen_stages >= 2: |
|
self.pos_drop.eval() |
|
for i in range(0, self.frozen_stages - 1): |
|
m = self.layers[i] |
|
m.eval() |
|
for param in m.parameters(): |
|
param.requires_grad = False |
|
|
|
def init_weights(self, pretrained=None): |
|
"""Initialize the weights in backbone. |
|
|
|
Args: |
|
pretrained (str, optional): Path to pre-trained weights. |
|
Defaults to None. |
|
""" |
|
|
|
def _init_weights(m): |
|
if isinstance(m, nn.Linear): |
|
trunc_normal_(m.weight, std=.02) |
|
if isinstance(m, nn.Linear) and m.bias is not None: |
|
nn.init.constant_(m.bias, 0) |
|
elif isinstance(m, nn.LayerNorm): |
|
nn.init.constant_(m.bias, 0) |
|
nn.init.constant_(m.weight, 1.0) |
|
|
|
if isinstance(pretrained, str): |
|
self.apply(_init_weights) |
|
# logger = get_root_logger() |
|
load_checkpoint(self, pretrained, strict=False, logger=None) |
|
elif pretrained is None: |
|
self.apply(_init_weights) |
|
else: |
|
raise TypeError('pretrained must be a str or None') |
|
|
|
def forward(self, x): |
|
x = self.patch_embed(x) |
|
|
|
Wh, Ww = x.size(2), x.size(3) |
|
if self.ape: |
|
# interpolate the position embedding to the corresponding size |
|
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, |
|
size=(Wh, Ww), |
|
mode='bicubic') |
|
x = (x + absolute_pos_embed) # B Wh*Ww C |
|
|
|
outs = [x.contiguous()] |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.pos_drop(x) |
|
for i in range(self.num_layers): |
|
layer = self.layers[i] |
|
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww) |
|
|
|
if i in self.out_indices: |
|
norm_layer = getattr(self, f'norm{i}') |
|
x_out = norm_layer(x_out) |
|
|
|
out = x_out.view(-1, H, W, |
|
self.num_features[i]).permute(0, 3, 1, |
|
2).contiguous() |
|
outs.append(out) |
|
|
|
return tuple(outs) |
|
|
|
def train(self, mode=True): |
|
"""Convert the model into training mode while keep layers freezed.""" |
|
super(SwinTransformer, self).train(mode) |
|
self._freeze_stages() |
|
#+end_src |
|
|
|
* Main code |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
import os |
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = '0' |
|
HOME_DIR = os.environ.get('HOME', '/root') |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
import sys |
|
|
|
sys.path.append(os.path.dirname(os.path.abspath(__file__))) |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
from datetime import datetime |
|
import argparse |
|
import numpy as np |
|
import random |
|
import math |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
import cv2 |
|
from PIL import Image |
|
from PIL import ImageEnhance |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
from einops import rearrange |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
import torch.utils.data as data |
|
|
|
from torch.autograd import Variable |
|
from torch.backends import cudnn |
|
from torch.cuda import amp |
|
from torch.utils.tensorboard import SummaryWriter |
|
|
|
from torchvision import transforms |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
from prodigyopt import Prodigy |
|
#+end_src |
|
|
|
** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
# from model.MVANet import MVANet |
|
from swin import SwinB |
|
#+end_src |
|
|
|
** train.function.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py |
|
def get_activation_fn(activation): |
|
"""Return an activation function given a string""" |
|
if activation == "relu": |
|
return F.relu |
|
if activation == "gelu": |
|
return F.gelu |
|
if activation == "glu": |
|
return F.glu |
|
raise RuntimeError(F"activation should be relu/gelu, not {activation}.") |
|
|
|
|
|
def make_cbr(in_dim, out_dim): |
|
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(out_dim), nn.PReLU()) |
|
|
|
|
|
def make_cbg(in_dim, out_dim): |
|
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(out_dim), nn.GELU()) |
|
|
|
|
|
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'): |
|
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation) |
|
|
|
|
|
def resize_as(x, y, interpolation='bilinear'): |
|
return F.interpolate(x, size=y.shape[-2:], mode=interpolation) |
|
|
|
|
|
def image2patches(x): |
|
"""b c (hg h) (wg w) -> (hg wg b) c h w""" |
|
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2) |
|
return x |
|
|
|
|
|
def patches2image(x): |
|
"""(hg wg b) c h w -> b c (hg h) (wg w)""" |
|
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2) |
|
return x |
|
|
|
|
|
def structure_loss(pred, mask): |
|
weit = 1 + 5 * torch.abs( |
|
F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask) |
|
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none') |
|
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3)) |
|
|
|
pred = torch.sigmoid(pred) |
|
inter = ((pred * mask) * weit).sum(dim=(2, 3)) |
|
|
|
union = ((pred + mask) * weit).sum(dim=(2, 3)) |
|
wiou = 1 - (inter + 1) / (union - inter + 1) |
|
|
|
return (wbce + wiou).mean() |
|
|
|
|
|
def clip_gradient(optimizer, grad_clip): |
|
for group in optimizer.param_groups: |
|
for param in group['params']: |
|
if param.grad is not None: |
|
param.grad.data.clamp_(-grad_clip, grad_clip) |
|
|
|
|
|
def adjust_lr(optimizer, init_lr, epoch, decay_rate=0.1, decay_epoch=5): |
|
decay = decay_rate**(epoch // decay_epoch) |
|
for param_group in optimizer.param_groups: |
|
param_group['lr'] *= decay |
|
|
|
|
|
def truncated_normal_(tensor, mean=0, std=1): |
|
size = tensor.shape |
|
tmp = tensor.new_empty(size + (4, )).normal_() |
|
valid = (tmp < 2) & (tmp > -2) |
|
ind = valid.max(-1, keepdim=True)[1] |
|
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1)) |
|
tensor.data.mul_(std).add_(mean) |
|
|
|
|
|
def init_weights(m): |
|
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d: |
|
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu') |
|
#nn.init.normal_(m.weight, std=0.001) |
|
#nn.init.normal_(m.bias, std=0.001) |
|
truncated_normal_(m.bias, mean=0, std=0.001) |
|
|
|
|
|
def init_weights_orthogonal_normal(m): |
|
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d: |
|
nn.init.orthogonal_(m.weight) |
|
truncated_normal_(m.bias, mean=0, std=0.001) |
|
#nn.init.normal_(m.bias, std=0.001) |
|
|
|
|
|
def l2_regularisation(m): |
|
l2_reg = None |
|
|
|
for W in m.parameters(): |
|
if l2_reg is None: |
|
l2_reg = W.norm(2) |
|
else: |
|
l2_reg = l2_reg + W.norm(2) |
|
return l2_reg |
|
|
|
|
|
def check_mkdir(dir_name): |
|
if not os.path.isdir(dir_name): |
|
os.makedirs(dir_name) |
|
|
|
|
|
# several data augumentation strategies |
|
def cv_random_flip(img, label): |
|
flip_flag = random.randint(0, 1) |
|
flip_flag2 = random.randint(0, 1) |
|
|
|
# left right flip |
|
if flip_flag == 1: |
|
img = img.transpose(Image.FLIP_LEFT_RIGHT) |
|
label = label.transpose(Image.FLIP_LEFT_RIGHT) |
|
|
|
# top bottom flip |
|
if flip_flag2 == 1: |
|
img = img.transpose(Image.FLIP_TOP_BOTTOM) |
|
label = label.transpose(Image.FLIP_TOP_BOTTOM) |
|
|
|
return img, label |
|
|
|
|
|
def random_crop_full(image, X, Y, TX, TY): |
|
image_width = image.size[0] |
|
image_height = image.size[1] |
|
final_width = image_width * TX |
|
final_height = image_height * TY |
|
|
|
start_x = (1.0 - TX) * X * image_width |
|
start_y = (1.0 - TY) * Y * image_height |
|
|
|
random_region = (start_x, start_y, start_x + final_width, |
|
start_y + final_height) |
|
|
|
return image.crop(random_region) |
|
|
|
|
|
def random_crop(image, X, Y, T): |
|
image_width = image.size[0] |
|
image_height = image.size[1] |
|
final_width = image_width * T |
|
final_height = image_height * T |
|
|
|
start_x = (1.0 - T) * X * image_width |
|
start_y = (1.0 - T) * Y * image_height |
|
|
|
random_region = (start_x, start_y, start_x + final_width, |
|
start_y + final_height) |
|
|
|
return image.crop(random_region) |
|
|
|
|
|
def garment_color_jitter(image, mask): |
|
image = np.array(image) |
|
mask = np.array(mask) |
|
mask = (mask > 127).astype(dtype=np.uint8) |
|
image = cv2.cvtColor(src=image, code=cv2.COLOR_RGB2HSV_FULL) |
|
image[:, :, 0] += mask * np.random.randint(0, 255) |
|
image = cv2.cvtColor(src=image, code=cv2.COLOR_HSV2RGB_FULL) |
|
image = Image.fromarray(image) |
|
return image |
|
|
|
|
|
def garment_color_jitter_rotate(image, mask, rotate_index=0, shift_amount=0): |
|
image = np.array(image) |
|
mask = np.array(mask) |
|
|
|
if rotate_index == 1: |
|
|
|
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_90_CLOCKWISE) |
|
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_CLOCKWISE) |
|
|
|
elif rotate_index == 2: |
|
|
|
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_180) |
|
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_180) |
|
|
|
elif rotate_index == 3: |
|
|
|
image = cv2.rotate(src=image, |
|
rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE) |
|
|
|
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE) |
|
|
|
image = cv2.cvtColor(src=image, |
|
code=cv2.COLOR_RGB2HSV_FULL).astype(dtype=np.int32) |
|
# image[:, :, 0] += mask_tmp * shift_amount |
|
image[:, :, 0] += shift_amount |
|
image[:, :, 0] %= 255 |
|
image = cv2.cvtColor(src=image.astype(np.uint8), |
|
code=cv2.COLOR_HSV2RGB_FULL) |
|
|
|
image = Image.fromarray(image) |
|
mask = Image.fromarray(mask) |
|
|
|
return image, mask |
|
|
|
|
|
def randomCrop_Both(image, label): |
|
|
|
image, label = garment_color_jitter_rotate( |
|
image=image, |
|
mask=label, |
|
rotate_index=np.random.randint(0, 4), |
|
shift_amount=np.random.randint(-4, +4), |
|
) |
|
|
|
TX = (np.random.rand() * 0.6) + 0.4 |
|
TY = (np.random.rand() * 0.6) + 0.4 |
|
X = np.random.rand() |
|
Y = np.random.rand() |
|
return random_crop_full(image, X, Y, TX, |
|
TY), random_crop_full(label, X, Y, TX, TY) |
|
|
|
|
|
def randomCrop_Old(image, label): |
|
|
|
# image, label = garment_color_jitter_rotate( |
|
# image=image, |
|
# mask=label, |
|
# rotate_index=np.random.randint(0, 4), |
|
# shift_amount=np.random.randint(0, 256)) |
|
|
|
# image, label = garment_color_jitter_rotate( |
|
# image=image, |
|
# mask=label, |
|
# rotate_index=np.random.randint(0, 4), |
|
# shift_amount=0, |
|
# ) |
|
|
|
T = (np.random.rand() * 0.6) + 0.4 |
|
X = np.random.rand() |
|
Y = np.random.rand() |
|
return random_crop(image, X, Y, T), random_crop(label, X, Y, T) |
|
|
|
|
|
def randomCrop(image, label): |
|
return randomCrop_Both(image, label) |
|
|
|
|
|
def randomCrop_original(image, label): |
|
image_width = image.size[0] |
|
image_height = image.size[1] |
|
border = min(image_width, image_height) // 2 |
|
|
|
crop_win_width = np.random.randint(image_width - border, image_width) |
|
crop_win_height = np.random.randint(image_height - border, image_height) |
|
|
|
random_region = ((image_width - crop_win_width) >> 1, |
|
(image_height - crop_win_height) >> 1, |
|
(image_width + crop_win_width) >> 1, |
|
(image_height + crop_win_height) >> 1) |
|
|
|
return image.crop(random_region), label.crop(random_region) |
|
|
|
|
|
def randomRotation(image, label): |
|
mode = Image.BICUBIC |
|
if random.random() > 0.8: |
|
random_angle = np.random.randint(-15, 15) |
|
image = image.rotate(random_angle, mode) |
|
label = label.rotate(random_angle, mode) |
|
return image, label |
|
|
|
|
|
def colorEnhance(image): |
|
bright_intensity = random.randint(5, 15) / 10.0 |
|
image = ImageEnhance.Brightness(image).enhance(bright_intensity) |
|
contrast_intensity = random.randint(5, 15) / 10.0 |
|
image = ImageEnhance.Contrast(image).enhance(contrast_intensity) |
|
color_intensity = random.randint(0, 20) / 10.0 |
|
image = ImageEnhance.Color(image).enhance(color_intensity) |
|
sharp_intensity = random.randint(0, 30) / 10.0 |
|
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity) |
|
return image |
|
|
|
|
|
def randomGaussian(image, mean=0.1, sigma=0.35): |
|
|
|
def gaussianNoisy(im, mean=mean, sigma=sigma): |
|
for _i in range(len(im)): |
|
im[_i] += random.gauss(mean, sigma) |
|
return im |
|
|
|
img = np.asarray(image) |
|
width, height = img.shape |
|
img = gaussianNoisy(img[:].flatten(), mean, sigma) |
|
img = img.reshape([width, height]) |
|
return Image.fromarray(np.uint8(img)) |
|
|
|
|
|
def randomPeper(img): |
|
img = np.array(img) |
|
noiseNum = int(0.0015 * img.shape[0] * img.shape[1]) |
|
for i in range(noiseNum): |
|
|
|
randX = random.randint(0, img.shape[0] - 1) |
|
|
|
randY = random.randint(0, img.shape[1] - 1) |
|
|
|
if random.randint(0, 1) == 0: |
|
|
|
img[randX, randY] = 0 |
|
|
|
else: |
|
|
|
img[randX, randY] = 255 |
|
return Image.fromarray(img) |
|
|
|
|
|
# dataloader for training |
|
def get_loader(image_root, |
|
gt_root, |
|
batchsize, |
|
trainsize, |
|
shuffle=True, |
|
num_workers=12, |
|
pin_memory=False): |
|
print('DEBUG 6') |
|
dataset = DISDataset(image_root, gt_root, trainsize) |
|
print('DEBUG 7') |
|
data_loader = data.DataLoader(dataset=dataset, |
|
batch_size=batchsize, |
|
shuffle=shuffle, |
|
num_workers=num_workers, |
|
pin_memory=pin_memory) |
|
print('DEBUG 8') |
|
return data_loader |
|
#+end_src |
|
|
|
** train.class.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py |
|
class AvgMeter(object): |
|
|
|
def __init__(self, num=40): |
|
self.num = num |
|
self.reset() |
|
|
|
def reset(self): |
|
self.val = 0 |
|
self.avg = 0 |
|
self.sum = 0 |
|
self.count = 0 |
|
self.losses = [] |
|
|
|
def update(self, val, n=1): |
|
self.val = val |
|
self.sum += val * n |
|
self.count += n |
|
self.avg = self.sum / self.count |
|
self.losses.append(val) |
|
|
|
def show(self): |
|
a = len(self.losses) |
|
b = np.maximum(a - self.num, 0) |
|
c = self.losses[b:] |
|
#print(c) |
|
#d = torch.mean(torch.stack(c)) |
|
#print(d) |
|
return torch.mean(torch.stack(c)) |
|
|
|
|
|
class Running_Avg(object): |
|
|
|
def __init__(self, weight=0.999): |
|
self.weight = weight |
|
self.reset() |
|
|
|
def reset(self): |
|
self.n = 0 |
|
self.val = 0 |
|
|
|
def update(self, val, n=1): |
|
self.val = (self.weight * self.val) + ((1 - self.weight) * val) |
|
self.n = (self.weight * self.n) + ((1 - self.weight) * n) |
|
|
|
def show(self): |
|
if self.n == 0: |
|
return 0 |
|
else: |
|
return self.val / self.n |
|
#+end_src |
|
|
|
** Main training dataset |
|
|
|
*** COMMENT Original |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py |
|
# dataset for training |
|
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps |
|
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved. |
|
class DISDataset(data.Dataset): |
|
|
|
def __init__(self, image_root, gt_root, trainsize): |
|
self.trainsize = trainsize |
|
self.images = [ |
|
image_root + f for f in os.listdir(image_root) |
|
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif') |
|
] |
|
self.gts = [ |
|
gt_root + f for f in os.listdir(gt_root) |
|
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif') |
|
] |
|
self.images = sorted(self.images) |
|
self.gts = sorted(self.gts) |
|
self.filter_files() |
|
self.size = len(self.images) |
|
self.img_transform = transforms.Compose([ |
|
transforms.Resize((self.trainsize, self.trainsize)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
self.gt_transform = transforms.Compose([ |
|
transforms.Resize((self.trainsize, self.trainsize)), |
|
transforms.ToTensor() |
|
]) |
|
|
|
def __getitem__(self, index): |
|
image = self.rgb_loader(self.images[index]) |
|
gt = self.binary_loader(self.gts[index]) |
|
image, gt = cv_random_flip(image, gt) |
|
image, gt = randomCrop(image, gt) |
|
image, gt = randomRotation(image, gt) |
|
image = colorEnhance(image) |
|
image = self.img_transform(image) |
|
gt = self.gt_transform(gt) |
|
|
|
return image, gt |
|
|
|
def filter_files(self): |
|
assert len(self.images) == len(self.gts) and len(self.gts) == len( |
|
self.images) |
|
images = [] |
|
gts = [] |
|
for img_path, gt_path in zip(self.images, self.gts): |
|
img = Image.open(img_path) |
|
gt = Image.open(gt_path) |
|
if img.size == gt.size: |
|
images.append(img_path) |
|
gts.append(gt_path) |
|
self.images = images |
|
self.gts = gts |
|
|
|
def rgb_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('RGB') |
|
|
|
def binary_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('L') |
|
|
|
def resize(self, img, gt): |
|
assert img.size == gt.size |
|
w, h = img.size |
|
if h < self.trainsize or w < self.trainsize: |
|
h = max(h, self.trainsize) |
|
w = max(w, self.trainsize) |
|
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), |
|
Image.NEAREST) |
|
else: |
|
return img, gt |
|
|
|
def __len__(self): |
|
return self.size |
|
#+end_src |
|
|
|
*** Changed |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py |
|
# dataset for training |
|
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps |
|
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved. |
|
class DISDataset(data.Dataset): |
|
|
|
def __init__(self, image_root, gt_root, trainsize): |
|
self.trainsize = trainsize |
|
end_pattern = '_segm.png' |
|
files = list(f for f in os.listdir(gt_root) if f.endswith(end_pattern)) |
|
files.sort() |
|
|
|
self.gts = list(gt_root + f for f in files) |
|
|
|
self.images = list(image_root + f[0:-len(end_pattern)] + '.jpg' |
|
for f in files) |
|
|
|
self.size = len(self.images) |
|
|
|
self.img_transform = transforms.Compose([ |
|
transforms.Resize((self.trainsize, self.trainsize)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
|
|
self.gt_transform = transforms.Compose([ |
|
transforms.Resize((self.trainsize, self.trainsize)), |
|
transforms.ToTensor() |
|
]) |
|
|
|
def __getitem__(self, index): |
|
image = self.rgb_loader(self.images[index]) |
|
gt = self.binary_loader(self.gts[index]) |
|
image, gt = cv_random_flip(image, gt) |
|
image, gt = randomCrop(image, gt) |
|
image, gt = randomRotation(image, gt) |
|
image = colorEnhance(image) |
|
image = self.img_transform(image) |
|
gt = self.gt_transform(gt) |
|
|
|
return image, gt |
|
|
|
def filter_files(self): |
|
assert len(self.images) == len(self.gts) and len(self.gts) == len( |
|
self.images) |
|
images = [] |
|
gts = [] |
|
for img_path, gt_path in zip(self.images, self.gts): |
|
img = Image.open(img_path) |
|
gt = Image.open(gt_path) |
|
if img.size == gt.size: |
|
images.append(img_path) |
|
gts.append(gt_path) |
|
self.images = images |
|
self.gts = gts |
|
|
|
def rgb_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('RGB') |
|
|
|
def binary_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('L') |
|
|
|
def resize(self, img, gt): |
|
assert img.size == gt.size |
|
w, h = img.size |
|
if h < self.trainsize or w < self.trainsize: |
|
h = max(h, self.trainsize) |
|
w = max(w, self.trainsize) |
|
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h), |
|
Image.NEAREST) |
|
else: |
|
return img, gt |
|
|
|
def __len__(self): |
|
return self.size |
|
#+end_src |
|
|
|
** train.class.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py |
|
# test dataset and loader |
|
class test_dataset: |
|
|
|
def __init__(self, image_root, depth_root, testsize): |
|
self.testsize = testsize |
|
self.images = [ |
|
image_root + f for f in os.listdir(image_root) |
|
if f.endswith('.jpg') |
|
] |
|
self.depths = [ |
|
depth_root + f for f in os.listdir(depth_root) |
|
if f.endswith('.bmp') or f.endswith('.png') |
|
] |
|
self.images = sorted(self.images) |
|
self.depths = sorted(self.depths) |
|
self.transform = transforms.Compose([ |
|
transforms.Resize((self.testsize, self.testsize)), |
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) |
|
]) |
|
# self.gt_transform = transforms.Compose([ |
|
# transforms.Resize((self.trainsize, self.trainsize)), |
|
# transforms.ToTensor()]) |
|
self.depths_transform = transforms.Compose([ |
|
transforms.Resize((self.testsize, self.testsize)), |
|
transforms.ToTensor() |
|
]) |
|
self.size = len(self.images) |
|
self.index = 0 |
|
|
|
def load_data(self): |
|
image = self.rgb_loader(self.images[self.index]) |
|
HH = image.size[0] |
|
WW = image.size[1] |
|
image = self.transform(image).unsqueeze(0) |
|
depth = self.rgb_loader(self.depths[self.index]) |
|
depth = self.depths_transform(depth).unsqueeze(0) |
|
|
|
name = self.images[self.index].split('/')[-1] |
|
# image_for_post=self.rgb_loader(self.images[self.index]) |
|
# image_for_post=image_for_post.resize(gt.size) |
|
if name.endswith('.jpg'): |
|
name = name.split('.jpg')[0] + '.png' |
|
self.index += 1 |
|
self.index = self.index % self.size |
|
return image, depth, HH, WW, name |
|
|
|
def rgb_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('RGB') |
|
|
|
def binary_loader(self, path): |
|
with open(path, 'rb') as f: |
|
img = Image.open(f) |
|
return img.convert('L') |
|
|
|
def __len__(self): |
|
return self.size |
|
|
|
|
|
class PositionEmbeddingSine: |
|
|
|
def __init__(self, |
|
num_pos_feats=64, |
|
temperature=10000, |
|
normalize=False, |
|
scale=None): |
|
|
|
super().__init__() |
|
|
|
self.num_pos_feats = num_pos_feats |
|
self.temperature = temperature |
|
self.normalize = normalize |
|
if scale is not None and normalize is False: |
|
raise ValueError("normalize should be True if scale is passed") |
|
if scale is None: |
|
scale = 2 * math.pi |
|
self.scale = scale |
|
self.dim_t = torch.arange(0, |
|
self.num_pos_feats, |
|
dtype=torch.float32, |
|
device='cuda') |
|
|
|
def __call__(self, b, h, w): |
|
mask = torch.zeros([b, h, w], dtype=torch.bool, device='cuda') |
|
assert mask is not None |
|
not_mask = ~mask |
|
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32) |
|
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32) |
|
if self.normalize: |
|
eps = 1e-6 |
|
y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) * |
|
self.scale).cuda() |
|
x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) * |
|
self.scale).cuda() |
|
|
|
dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats) |
|
|
|
pos_x = x_embed[:, :, :, None] / dim_t |
|
pos_y = y_embed[:, :, :, None] / dim_t |
|
pos_x = torch.stack( |
|
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
pos_y = torch.stack( |
|
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), |
|
dim=4).flatten(3) |
|
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) |
|
|
|
|
|
class MCLM(nn.Module): |
|
|
|
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]): |
|
super(MCLM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
|
|
self.linear1 = nn.Linear(d_model, d_model * 2) |
|
self.linear2 = nn.Linear(d_model * 2, d_model) |
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.activation = get_activation_fn('relu') |
|
self.pool_ratios = pool_ratios |
|
self.p_poses = [] |
|
self.g_pos = None |
|
self.positional_encoding = PositionEmbeddingSine( |
|
num_pos_feats=d_model // 2, normalize=True) |
|
|
|
def forward(self, l, g): |
|
""" |
|
l: 4,c,h,w |
|
g: 1,c,h,w |
|
""" |
|
b, c, h, w = l.size() |
|
# 4,c,h,w -> 1,c,2h,2w |
|
concated_locs = rearrange(l, |
|
'(hg wg b) c h w -> b c (hg h) (wg w)', |
|
hg=2, |
|
wg=2) |
|
|
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
# b,c,h,w |
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw) |
|
pools.append(rearrange(pool, 'b c h w -> (h w) b c')) |
|
if self.g_pos is None: |
|
pos_emb = self.positional_encoding(pool.shape[0], |
|
pool.shape[2], |
|
pool.shape[3]) |
|
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
self.p_poses.append(pos_emb) |
|
pools = torch.cat(pools, 0) |
|
if self.g_pos is None: |
|
self.p_poses = torch.cat(self.p_poses, dim=0) |
|
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], |
|
g.shape[3]) |
|
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
|
|
# attention between glb (q) & multisensory concated-locs (k,v) |
|
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c') |
|
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0]( |
|
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0]) |
|
g_hw_b_c = self.norm1(g_hw_b_c) |
|
g_hw_b_c = g_hw_b_c + self.dropout2( |
|
self.linear2( |
|
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone()))) |
|
g_hw_b_c = self.norm2(g_hw_b_c) |
|
|
|
# attention between origin locs (q) & freashed glb (k,v) |
|
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c") |
|
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w) |
|
_g_hw_b_c = rearrange(_g_hw_b_c, |
|
"(ng h) (nw w) b c -> (h w) (ng nw b) c", |
|
ng=2, |
|
nw=2) |
|
outputs_re = [] |
|
for i, (_l, _g) in enumerate( |
|
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))): |
|
outputs_re.append(self.attention[i + 1](_l, _g, |
|
_g)[0]) # (h w) 1 c |
|
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c |
|
|
|
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re) |
|
l_hw_b_c = self.norm1(l_hw_b_c) |
|
l_hw_b_c = l_hw_b_c + self.dropout2( |
|
self.linear4( |
|
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone()))) |
|
l_hw_b_c = self.norm2(l_hw_b_c) |
|
|
|
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c |
|
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w) |
|
|
|
|
|
class inf_MCLM(nn.Module): |
|
|
|
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]): |
|
super(inf_MCLM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
|
|
self.linear1 = nn.Linear(d_model, d_model * 2) |
|
self.linear2 = nn.Linear(d_model * 2, d_model) |
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.activation = get_activation_fn('relu') |
|
self.pool_ratios = pool_ratios |
|
self.p_poses = [] |
|
self.g_pos = None |
|
self.positional_encoding = PositionEmbeddingSine( |
|
num_pos_feats=d_model // 2, normalize=True) |
|
|
|
def forward(self, l, g): |
|
""" |
|
l: 4,c,h,w |
|
g: 1,c,h,w |
|
""" |
|
b, c, h, w = l.size() |
|
# 4,c,h,w -> 1,c,2h,2w |
|
concated_locs = rearrange(l, |
|
'(hg wg b) c h w -> b c (hg h) (wg w)', |
|
hg=2, |
|
wg=2) |
|
self.p_poses = [] |
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
# b,c,h,w |
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw) |
|
pools.append(rearrange(pool, 'b c h w -> (h w) b c')) |
|
# if self.g_pos is None: |
|
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2], |
|
pool.shape[3]) |
|
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
self.p_poses.append(pos_emb) |
|
pools = torch.cat(pools, 0) |
|
# if self.g_pos is None: |
|
self.p_poses = torch.cat(self.p_poses, dim=0) |
|
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3]) |
|
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c') |
|
|
|
# attention between glb (q) & multisensory concated-locs (k,v) |
|
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c') |
|
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0]( |
|
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0]) |
|
g_hw_b_c = self.norm1(g_hw_b_c) |
|
g_hw_b_c = g_hw_b_c + self.dropout2( |
|
self.linear2( |
|
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone()))) |
|
g_hw_b_c = self.norm2(g_hw_b_c) |
|
|
|
# attention between origin locs (q) & freashed glb (k,v) |
|
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c") |
|
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w) |
|
_g_hw_b_c = rearrange(_g_hw_b_c, |
|
"(ng h) (nw w) b c -> (h w) (ng nw b) c", |
|
ng=2, |
|
nw=2) |
|
outputs_re = [] |
|
for i, (_l, _g) in enumerate( |
|
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))): |
|
outputs_re.append(self.attention[i + 1](_l, _g, |
|
_g)[0]) # (h w) 1 c |
|
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c |
|
|
|
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re) |
|
l_hw_b_c = self.norm1(l_hw_b_c) |
|
l_hw_b_c = l_hw_b_c + self.dropout2( |
|
self.linear4( |
|
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone()))) |
|
l_hw_b_c = self.norm2(l_hw_b_c) |
|
|
|
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c |
|
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w) |
|
|
|
|
|
class MCRM(nn.Module): |
|
|
|
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None): |
|
super(MCRM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
|
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.sigmoid = nn.Sigmoid() |
|
self.activation = get_activation_fn('relu') |
|
self.sal_conv = nn.Conv2d(d_model, 1, 1) |
|
self.pool_ratios = pool_ratios |
|
self.positional_encoding = PositionEmbeddingSine( |
|
num_pos_feats=d_model // 2, normalize=True) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.size() |
|
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w |
|
# b(4),c,h,w |
|
patched_glb = rearrange(glb, |
|
'b c (hg h) (wg w) -> (hg wg b) c h w', |
|
hg=2, |
|
wg=2) |
|
|
|
# generate token attention map |
|
token_attention_map = self.sigmoid(self.sal_conv(glb)) |
|
token_attention_map = F.interpolate(token_attention_map, |
|
size=patches2image(loc).shape[-2:], |
|
mode='nearest') |
|
loc = loc * rearrange(token_attention_map, |
|
'b c (hg h) (wg w) -> (hg wg b) c h w', |
|
hg=2, |
|
wg=2) |
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw) |
|
pools.append(rearrange(pool, |
|
'nl c h w -> nl c (h w)')) # nl(4),c,hw |
|
# nl(4),c,nphw -> nl(4),nphw,1,c |
|
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c") |
|
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c') |
|
outputs = [] |
|
for i, q in enumerate( |
|
loc_.unbind(dim=0)): # traverse all local patches |
|
# np*hw,1,c |
|
v = pools[i] |
|
k = v |
|
outputs.append(self.attention[i](q, k, v)[0]) |
|
outputs = torch.cat(outputs, 1) |
|
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs) |
|
src = self.norm1(src) |
|
src = src + self.dropout2( |
|
self.linear4( |
|
self.dropout(self.activation(self.linear3(src)).clone()))) |
|
src = self.norm2(src) |
|
|
|
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc |
|
glb = glb + F.interpolate(patches2image(src), |
|
size=glb.shape[-2:], |
|
mode='nearest') # freshed glb |
|
return torch.cat((src, glb), 0), token_attention_map |
|
|
|
|
|
class inf_MCRM(nn.Module): |
|
|
|
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None): |
|
super(inf_MCRM, self).__init__() |
|
self.attention = nn.ModuleList([ |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1), |
|
nn.MultiheadAttention(d_model, num_heads, dropout=0.1) |
|
]) |
|
|
|
self.linear3 = nn.Linear(d_model, d_model * 2) |
|
self.linear4 = nn.Linear(d_model * 2, d_model) |
|
self.norm1 = nn.LayerNorm(d_model) |
|
self.norm2 = nn.LayerNorm(d_model) |
|
self.dropout = nn.Dropout(0.1) |
|
self.dropout1 = nn.Dropout(0.1) |
|
self.dropout2 = nn.Dropout(0.1) |
|
self.sigmoid = nn.Sigmoid() |
|
self.activation = get_activation_fn('relu') |
|
self.sal_conv = nn.Conv2d(d_model, 1, 1) |
|
self.pool_ratios = pool_ratios |
|
self.positional_encoding = PositionEmbeddingSine( |
|
num_pos_feats=d_model // 2, normalize=True) |
|
|
|
def forward(self, x): |
|
b, c, h, w = x.size() |
|
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w |
|
# b(4),c,h,w |
|
patched_glb = rearrange(glb, |
|
'b c (hg h) (wg w) -> (hg wg b) c h w', |
|
hg=2, |
|
wg=2) |
|
|
|
# generate token attention map |
|
token_attention_map = self.sigmoid(self.sal_conv(glb)) |
|
token_attention_map = F.interpolate(token_attention_map, |
|
size=patches2image(loc).shape[-2:], |
|
mode='nearest') |
|
loc = loc * rearrange(token_attention_map, |
|
'b c (hg h) (wg w) -> (hg wg b) c h w', |
|
hg=2, |
|
wg=2) |
|
pools = [] |
|
for pool_ratio in self.pool_ratios: |
|
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio)) |
|
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw) |
|
pools.append(rearrange(pool, |
|
'nl c h w -> nl c (h w)')) # nl(4),c,hw |
|
# nl(4),c,nphw -> nl(4),nphw,1,c |
|
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c") |
|
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c') |
|
outputs = [] |
|
for i, q in enumerate( |
|
loc_.unbind(dim=0)): # traverse all local patches |
|
# np*hw,1,c |
|
v = pools[i] |
|
k = v |
|
outputs.append(self.attention[i](q, k, v)[0]) |
|
outputs = torch.cat(outputs, 1) |
|
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs) |
|
src = self.norm1(src) |
|
src = src + self.dropout2( |
|
self.linear4( |
|
self.dropout(self.activation(self.linear3(src)).clone()))) |
|
src = self.norm2(src) |
|
|
|
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc |
|
glb = glb + F.interpolate(patches2image(src), |
|
size=glb.shape[-2:], |
|
mode='nearest') # freshed glb |
|
return torch.cat((src, glb), 0) |
|
|
|
|
|
# model for single-scale training |
|
class MVANet(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.backbone = SwinB(pretrained=True) |
|
emb_dim = 128 |
|
self.sideout5 = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout4 = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout3 = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout2 = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
self.sideout1 = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
|
|
self.output5 = make_cbr(1024, emb_dim) |
|
self.output4 = make_cbr(512, emb_dim) |
|
self.output3 = make_cbr(256, emb_dim) |
|
self.output2 = make_cbr(128, emb_dim) |
|
self.output1 = make_cbr(128, emb_dim) |
|
|
|
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8]) |
|
self.conv1 = make_cbr(emb_dim, emb_dim) |
|
self.conv2 = make_cbr(emb_dim, emb_dim) |
|
self.conv3 = make_cbr(emb_dim, emb_dim) |
|
self.conv4 = make_cbr(emb_dim, emb_dim) |
|
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8]) |
|
|
|
self.insmask_head = nn.Sequential( |
|
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(384), nn.PReLU(), |
|
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384), |
|
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)) |
|
|
|
self.shallow = nn.Sequential( |
|
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1)) |
|
self.upsample1 = make_cbg(emb_dim, emb_dim) |
|
self.upsample2 = make_cbg(emb_dim, emb_dim) |
|
self.output = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): |
|
m.inplace = True |
|
|
|
def forward(self, x): |
|
shallow = self.shallow(x) |
|
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear') |
|
loc = image2patches(x) |
|
input = torch.cat((loc, glb), dim=0) |
|
feature = self.backbone(input) |
|
e5 = self.output5(feature[4]) # (5,128,16,16) |
|
e4 = self.output4(feature[3]) # (5,128,32,32) |
|
e3 = self.output3(feature[2]) # (5,128,64,64) |
|
e2 = self.output2(feature[1]) # (5,128,128,128) |
|
e1 = self.output1(feature[0]) # (5,128,128,128) |
|
loc_e5, glb_e5 = e5.split([4, 1], dim=0) |
|
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16) |
|
|
|
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4)) |
|
e4 = self.conv4(e4) |
|
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3)) |
|
e3 = self.conv3(e3) |
|
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2)) |
|
e2 = self.conv2(e2) |
|
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1)) |
|
e1 = self.conv1(e1) |
|
loc_e1, glb_e1 = e1.split([4, 1], dim=0) |
|
output1_cat = patches2image(loc_e1) # (1,128,256,256) |
|
# add glb feat in |
|
output1_cat = output1_cat + resize_as(glb_e1, output1_cat) |
|
# merge |
|
final_output = self.insmask_head(output1_cat) # (1,128,256,256) |
|
# shallow feature merge |
|
final_output = final_output + resize_as(shallow, final_output) |
|
final_output = self.upsample1(rescale_to(final_output)) |
|
final_output = rescale_to(final_output + |
|
resize_as(shallow, final_output)) |
|
final_output = self.upsample2(final_output) |
|
final_output = self.output(final_output) |
|
#### |
|
sideout5 = self.sideout5(e5).cuda() |
|
sideout4 = self.sideout4(e4) |
|
sideout3 = self.sideout3(e3) |
|
sideout2 = self.sideout2(e2) |
|
sideout1 = self.sideout1(e1) |
|
#######glb_sideouts ###### |
|
glb5 = self.sideout5(glb_e5) |
|
glb4 = sideout4[-1, :, :, :].unsqueeze(0) |
|
glb3 = sideout3[-1, :, :, :].unsqueeze(0) |
|
glb2 = sideout2[-1, :, :, :].unsqueeze(0) |
|
glb1 = sideout1[-1, :, :, :].unsqueeze(0) |
|
####### concat 4 to 1 ####### |
|
sideout1 = patches2image(sideout1[:-1]).cuda() |
|
sideout2 = patches2image( |
|
sideout2[:-1]).cuda() ####(5,c,h,w) -> (1 c 2h,2w) |
|
sideout3 = patches2image(sideout3[:-1]).cuda() |
|
sideout4 = patches2image(sideout4[:-1]).cuda() |
|
sideout5 = patches2image(sideout5[:-1]).cuda() |
|
if self.training: |
|
return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1 |
|
else: |
|
return final_output |
|
|
|
|
|
# model for multi-scale testing |
|
class inf_MVANet(nn.Module): |
|
|
|
def __init__(self): |
|
super().__init__() |
|
self.backbone = SwinB(pretrained=True) |
|
|
|
emb_dim = 128 |
|
self.output5 = make_cbr(1024, emb_dim) |
|
self.output4 = make_cbr(512, emb_dim) |
|
self.output3 = make_cbr(256, emb_dim) |
|
self.output2 = make_cbr(128, emb_dim) |
|
self.output1 = make_cbr(128, emb_dim) |
|
|
|
self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8]) |
|
self.conv1 = make_cbr(emb_dim, emb_dim) |
|
self.conv2 = make_cbr(emb_dim, emb_dim) |
|
self.conv3 = make_cbr(emb_dim, emb_dim) |
|
self.conv4 = make_cbr(emb_dim, emb_dim) |
|
self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8]) |
|
self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8]) |
|
|
|
self.insmask_head = nn.Sequential( |
|
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1), |
|
nn.BatchNorm2d(384), nn.PReLU(), |
|
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384), |
|
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1)) |
|
|
|
self.shallow = nn.Sequential( |
|
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1)) |
|
self.upsample1 = make_cbg(emb_dim, emb_dim) |
|
self.upsample2 = make_cbg(emb_dim, emb_dim) |
|
self.output = nn.Sequential( |
|
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1)) |
|
|
|
for m in self.modules(): |
|
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout): |
|
m.inplace = True |
|
|
|
def forward(self, x): |
|
shallow = self.shallow(x) |
|
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear') |
|
loc = image2patches(x) |
|
input = torch.cat((loc, glb), dim=0) |
|
feature = self.backbone(input) |
|
e5 = self.output5(feature[4]) |
|
e4 = self.output4(feature[3]) |
|
e3 = self.output3(feature[2]) |
|
e2 = self.output2(feature[1]) |
|
e1 = self.output1(feature[0]) |
|
print(e5.shape) |
|
loc_e5, glb_e5 = e5.split([4, 1], dim=0) |
|
e5_cat = self.multifieldcrossatt(loc_e5, glb_e5) |
|
|
|
e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4))) |
|
e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3))) |
|
e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2))) |
|
e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1))) |
|
loc_e1, glb_e1 = e1.split([4, 1], dim=0) |
|
# after decoder, concat loc features to a whole one, and merge |
|
output1_cat = patches2image(loc_e1) |
|
# add glb feat in |
|
output1_cat = output1_cat + resize_as(glb_e1, output1_cat) |
|
# merge |
|
final_output = self.insmask_head(output1_cat) |
|
# shallow feature merge |
|
final_output = final_output + resize_as(shallow, final_output) |
|
final_output = self.upsample1(rescale_to(final_output)) |
|
final_output = rescale_to(final_output + |
|
resize_as(shallow, final_output)) |
|
final_output = self.upsample2(final_output) |
|
final_output = self.output(final_output) |
|
return final_output |
|
#+end_src |
|
|
|
** train.execute.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py |
|
writer = SummaryWriter() |
|
|
|
cudnn.benchmark = True |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--epoch', type=int, default=80, help='epoch number') |
|
parser.add_argument('--lr_gen', type=float, default=1e-5, help='learning rate') |
|
parser.add_argument('--batchsize', |
|
type=int, |
|
default=1, |
|
help='training batch size') |
|
parser.add_argument('--trainsize', |
|
type=int, |
|
default=1024, |
|
help='training dataset size') |
|
parser.add_argument('--decay_rate', |
|
type=float, |
|
default=0.9, |
|
help='decay rate of learning rate') |
|
parser.add_argument('--decay_epoch', |
|
type=int, |
|
default=80, |
|
help='every n epochs decay learning rate') |
|
|
|
opt = parser.parse_args() |
|
print('Generator Learning Rate: {}'.format(opt.lr_gen)) |
|
# build models |
|
if hasattr(torch.cuda, 'empty_cache'): |
|
torch.cuda.empty_cache() |
|
generator = MVANet() |
|
generator.cuda() |
|
print('DEBUG 3') |
|
|
|
pretrained_dict = torch.load( |
|
HOME_DIR + |
|
'/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth', |
|
map_location='cuda') |
|
|
|
model_dict = generator.state_dict() |
|
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict} |
|
model_dict.update(pretrained_dict) |
|
generator.load_state_dict(model_dict) |
|
|
|
generator_params = generator.parameters() |
|
# generator_optimizer = torch.optim.Adam(generator_params, opt.lr_gen) |
|
generator_optimizer = Prodigy(generator_params, lr=1., weight_decay=0.01) |
|
|
|
print('DEBUG 4') |
|
|
|
image_root = './data/image/' |
|
gt_root = './data/mask/' |
|
|
|
train_loader = get_loader(image_root, |
|
gt_root, |
|
batchsize=opt.batchsize, |
|
trainsize=opt.trainsize) |
|
|
|
print('DEBUG 5') |
|
|
|
total_step = len(train_loader) |
|
to_pil = transforms.ToPILImage() |
|
## define loss |
|
print('DEBUG 2') |
|
|
|
CE = torch.nn.BCELoss() |
|
mse_loss = torch.nn.MSELoss(size_average=True, reduce=True) |
|
size_rates = [1] |
|
criterion = nn.BCEWithLogitsLoss().cuda() |
|
criterion_mae = nn.L1Loss().cuda() |
|
criterion_mse = nn.MSELoss().cuda() |
|
use_fp16 = True |
|
scaler = amp.GradScaler(enabled=use_fp16) |
|
print('DEBUG 1') |
|
|
|
for epoch in range(1, opt.epoch + 1): |
|
torch.cuda.empty_cache() |
|
generator.train() |
|
# loss_record = AvgMeter() |
|
loss_record = Running_Avg() |
|
print('Generator Learning Rate: {}'.format( |
|
generator_optimizer.param_groups[0]['lr'])) |
|
for i, pack in enumerate(train_loader, start=1): |
|
torch.cuda.empty_cache() |
|
for rate in size_rates: |
|
torch.cuda.empty_cache() |
|
generator_optimizer.zero_grad() |
|
images, gts = pack |
|
images = Variable(images) |
|
gts = Variable(gts) |
|
images = images.cuda() |
|
gts = gts.cuda() |
|
trainsize = int(round(opt.trainsize * rate / 32) * 32) |
|
if rate != 1: |
|
images = F.upsample(images, |
|
size=(trainsize, trainsize), |
|
mode='bilinear', |
|
align_corners=True) |
|
gts = F.upsample(gts, |
|
size=(trainsize, trainsize), |
|
mode='bilinear', |
|
align_corners=True) |
|
|
|
b, c, h, w = gts.size() |
|
target_1 = F.upsample(gts, size=h // 4, mode='nearest') |
|
target_2 = F.upsample(gts, size=h // 8, mode='nearest').cuda() |
|
target_3 = F.upsample(gts, size=h // 16, mode='nearest').cuda() |
|
target_4 = F.upsample(gts, size=h // 32, mode='nearest').cuda() |
|
target_5 = F.upsample(gts, size=h // 64, mode='nearest').cuda() |
|
|
|
with amp.autocast(enabled=use_fp16): |
|
sideout5, sideout4, sideout3, sideout2, sideout1, final, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1 = generator.forward( |
|
images) |
|
loss1 = structure_loss(sideout5, target_4) |
|
loss2 = structure_loss(sideout4, target_3) |
|
loss3 = structure_loss(sideout3, target_2) |
|
loss4 = structure_loss(sideout2, target_1) |
|
loss5 = structure_loss(sideout1, target_1) |
|
loss6 = structure_loss(final, gts) |
|
loss7 = structure_loss(glb5, target_5) |
|
loss8 = structure_loss(glb4, target_4) |
|
loss9 = structure_loss(glb3, target_3) |
|
loss10 = structure_loss(glb2, target_2) |
|
loss11 = structure_loss(glb1, target_2) |
|
loss12 = structure_loss(tokenattmap4, target_3) |
|
loss13 = structure_loss(tokenattmap3, target_2) |
|
loss14 = structure_loss(tokenattmap2, target_1) |
|
loss15 = structure_loss(tokenattmap1, target_1) |
|
loss = loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + 0.3 * ( |
|
loss7 + loss8 + loss9 + loss10 + |
|
loss11) + 0.3 * (loss12 + loss13 + loss14 + loss15) |
|
Loss_loc = loss1 + loss2 + loss3 + loss4 + loss5 + loss6 |
|
Loss_glb = loss7 + loss8 + loss9 + loss10 + loss11 |
|
Loss_map = loss12 + loss13 + loss14 + loss15 |
|
writer.add_scalar('loss', loss.item(), |
|
epoch * len(train_loader) + i) |
|
|
|
generator_optimizer.zero_grad() |
|
scaler.scale(loss).backward() |
|
scaler.step(generator_optimizer) |
|
scaler.update() |
|
|
|
if rate == 1: |
|
loss_record.update(loss.data, opt.batchsize) |
|
|
|
if i % 10 == 0 or i == total_step: |
|
print( |
|
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], gen Loss: {:.4f}' |
|
.format(datetime.now(), epoch, opt.epoch, i, total_step, |
|
loss_record.show())) |
|
|
|
if i % 8000 == 0 or i == total_step: |
|
save_path = './saved_model/' |
|
if not os.path.exists(save_path): |
|
os.mkdir(save_path) |
|
torch.save( |
|
generator.state_dict(), |
|
save_path + 'Model' + '_%d' % epoch + '_%d' % i + '.pth') |
|
|
|
# adjust_lr(generator_optimizer, opt.lr_gen, epoch, opt.decay_rate, |
|
# opt.decay_epoch) |
|
# save checkpoints every 20 epochs |
|
# if epoch % 20 == 0: |
|
if True: |
|
|
|
save_path = './saved_model/' |
|
if not os.path.exists(save_path): |
|
os.mkdir(save_path) |
|
|
|
save_path = './saved_model/MVANet/' |
|
if not os.path.exists(save_path): |
|
os.mkdir(save_path) |
|
|
|
torch.save(generator.state_dict(), |
|
save_path + 'Model' + '_%d' % epoch + '.pth') |
|
#+end_src |
|
|
|
* SAMPLE |
|
|
|
** train |
|
|
|
*** train.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py |
|
#+end_src |
|
|
|
*** train.function.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py |
|
#+end_src |
|
|
|
*** train.class.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py |
|
#+end_src |
|
|
|
*** train.execute.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py |
|
#+end_src |
|
|
|
** swin |
|
|
|
*** swin.import.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py |
|
#+end_src |
|
|
|
*** swin.function.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py |
|
#+end_src |
|
|
|
*** swin.class.py |
|
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py |
|
#+end_src |
|
|
|
* UNIFY |
|
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./train.unify.sh |
|
. "${HOME}/dbnew.sh" |
|
|
|
echo '#!/usr/bin/python3' > './train.py' |
|
|
|
cat \ |
|
'./train.import.py' \ |
|
'./train.function.py' \ |
|
'./train.class.py' \ |
|
'./train.execute.py' \ |
|
| expand | yapf3 \ |
|
| grep -v '^#!/usr/bin/python3$' \ |
|
>> './train.py' \ |
|
; |
|
|
|
echo '#!/usr/bin/python3' > './swin.py' |
|
|
|
cat \ |
|
'./swin.import.py' \ |
|
'./swin.function.py' \ |
|
'./swin.class.py' \ |
|
| expand | yapf3 \ |
|
| grep -v '^#!/usr/bin/python3$' \ |
|
>> './swin.py' \ |
|
; |
|
|
|
rm -vf |
|
'./swin.class.py' \ |
|
'./swin.function.py' \ |
|
'./swin.import.py' \ |
|
'./train.class.py' \ |
|
'./train.execute.py' \ |
|
'./train.function.py' \ |
|
'./train.import.py' \ |
|
'./train.unify.sh' \ |
|
; |
|
#+end_src |
|
|
|
* Run |
|
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./run.sh |
|
. "${HOME}/dbnew.sh" |
|
|
|
cd "$('dirname' '--' "${0}")" |
|
|
|
pip3 install -r './requirements.txt' |
|
|
|
python3 ./train.py |
|
#+end_src |
|
|
|
* WORK SPACE |
|
|
|
** ELISP |
|
#+begin_src elisp |
|
(save-buffer) |
|
(org-babel-tangle) |
|
(shell-command "./train.unify.sh") |
|
#+end_src |
|
|
|
#+RESULTS: |
|
: 0 |
|
|
|
** SHELL |
|
#+begin_src sh :shebang #!/bin/sh :results output |
|
realpath . |
|
cd /home/asd/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train |
|
#+end_src |
|
|