aravindhv10's picture
Routine updates
0be46a0
* Requirements
#+begin_src conf :tangle ./requirements.txt
einops
pillow
prodigyopt
tensorboard
timm
torch
torchvision
#+end_src
* Download trained model
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./download.sh
"efficient_download.sh" \
'https://huggingface.co/aravindhv10/Self-Correction-Human-Parsing/resolve/main/checkpoints/Model_80.pth' \
'Model_80.pth' \
'6ca28df33ba8476ac13be329a1b1b8b390da5d8042638fb124df3c067c2fe45bccde4366643b830066cbe0164ddbb978a1987a398b4a987f99d908903b44774f' \
"${HOME}/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth" \
;
#+end_src
* Swin code
** swin.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
import os
os.environ["CUDA_VISIBLE_DEVICES"] ='0'
#+end_src
** swin.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
import numpy as np
#+end_src
** swin.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
#+end_src
** swin.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
from timm.models import load_checkpoint
from timm.models.layers import DropPath
from timm.models.layers import to_2tuple
from timm.models.layers import trunc_normal_
# from mmdet.utils import get_root_logger
#+end_src
** swin.function.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py
def window_partition(x, window_size):
"""
Args:
x: (B, H, W, C)
window_size (int): window size
Returns:
windows: (num_windows*B, window_size, window_size, C)
"""
B, H, W, C = x.shape
x = x.view(B, H // window_size, window_size, W // window_size, window_size,
C)
windows = x.permute(0, 1, 3, 2, 4,
5).contiguous().view(-1, window_size, window_size, C)
return windows
def window_reverse(windows, window_size, H, W):
"""
Args:
windows: (num_windows*B, window_size, window_size, C)
window_size (int): Window size
H (int): Height of image
W (int): Width of image
Returns:
x: (B, H, W, C)
"""
B = int(windows.shape[0] / (H * W / window_size / window_size))
x = windows.view(B, H // window_size, W // window_size, window_size,
window_size, -1)
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
return x
def SwinT(pretrained=True):
model = SwinTransformer(embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
# if pretrained is True:
# model.load_state_dict(torch.load(
# 'data/backbone_ckpt/swin_tiny_patch4_window7_224.pth',
# map_location='cpu')['model'],
# strict=False)
return model
def SwinS(pretrained=True):
model = SwinTransformer(embed_dim=96,
depths=[2, 2, 18, 2],
num_heads=[3, 6, 12, 24],
window_size=7)
# if pretrained is True:
# model.load_state_dict(torch.load(
# 'data/backbone_ckpt/swin_small_patch4_window7_224.pth',
# map_location='cpu')['model'],
# strict=False)
return model
def SwinB(pretrained=True):
model = SwinTransformer(embed_dim=128,
depths=[2, 2, 18, 2],
num_heads=[4, 8, 16, 32],
window_size=12)
# if pretrained is True:
# model.load_state_dict(
# torch.load('./swin_base_patch4_window12_384_22kto1k.pth',
# map_location='cpu')['model'],
# strict=False)
return model
def SwinL(pretrained=True):
model = SwinTransformer(embed_dim=192,
depths=[2, 2, 18, 2],
num_heads=[6, 12, 24, 48],
window_size=12)
# if pretrained is True:
# model.load_state_dict(torch.load(
# 'data/backbone_ckpt/swin_large_patch4_window12_384_22kto1k.pth',
# map_location='cpu')['model'],
# strict=False)
return model
#+end_src
** swin.class.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py
class Mlp(nn.Module):
""" Multilayer perceptron."""
def __init__(self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
x = self.drop(x)
return x
class WindowAttention(nn.Module):
""" Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.,
proj_drop=0.):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
# define a parameter table of relative position bias
self.relative_position_bias_table = nn.Parameter(
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1),
num_heads)) # 2*Wh-1 * 2*Ww-1, nH
# get pair-wise relative position index for each token inside the window
coords_h = torch.arange(self.window_size[0])
coords_w = torch.arange(self.window_size[1])
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
relative_coords = coords_flatten[:, :,
None] - coords_flatten[:,
None, :] # 2, Wh*Ww, Wh*Ww
relative_coords = relative_coords.permute(
1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
relative_coords[:, :,
0] += self.window_size[0] - 1 # shift to start from 0
relative_coords[:, :, 1] += self.window_size[1] - 1
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index",
relative_position_index)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
trunc_normal_(self.relative_position_bias_table, std=.02)
self.softmax = nn.Softmax(dim=-1)
def forward(self, x, mask=None):
""" Forward function.
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads,
C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[
2] # make torchscript happy (cannot use tensor as tuple)
q = q * self.scale
attn = (q @ k.transpose(-2, -1))
relative_position_bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)].view(
self.window_size[0] * self.window_size[1],
self.window_size[0] * self.window_size[1],
-1) # Wh*Ww,Wh*Ww,nH
relative_position_bias = relative_position_bias.permute(
2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
attn = attn + relative_position_bias.unsqueeze(0)
if mask is not None:
nW = mask.shape[0]
attn = attn.view(B_ // nW, nW, self.num_heads, N,
N) + mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(-1, self.num_heads, N, N)
attn = self.softmax(attn)
else:
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
x = self.proj(x)
x = self.proj_drop(x)
return x
class SwinTransformerBlock(nn.Module):
""" Swin Transformer Block.
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self,
dim,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
self.norm1 = norm_layer(dim)
self.attn = WindowAttention(dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop)
self.drop_path = DropPath(
drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = Mlp(in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop)
self.H = None
self.W = None
def forward(self, x, mask_matrix):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
mask_matrix: Attention mask for cyclic shift.
"""
B, L, C = x.shape
H, W = self.H, self.W
assert L == H * W, "input feature has wrong size"
shortcut = x
x = self.norm1(x)
x = x.view(B, H, W, C)
# pad feature maps to multiples of window size
pad_l = pad_t = 0
pad_r = (self.window_size - W % self.window_size) % self.window_size
pad_b = (self.window_size - H % self.window_size) % self.window_size
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
_, Hp, Wp, _ = x.shape
# cyclic shift
if self.shift_size > 0:
shifted_x = torch.roll(x,
shifts=(-self.shift_size, -self.shift_size),
dims=(1, 2))
attn_mask = mask_matrix
else:
shifted_x = x
attn_mask = None
# partition windows
x_windows = window_partition(
shifted_x, self.window_size) # nW*B, window_size, window_size, C
x_windows = x_windows.view(-1, self.window_size * self.window_size,
C) # nW*B, window_size*window_size, C
# W-MSA/SW-MSA
attn_windows = self.attn(
x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
# merge windows
attn_windows = attn_windows.view(-1, self.window_size,
self.window_size, C)
shifted_x = window_reverse(attn_windows, self.window_size, Hp,
Wp) # B H' W' C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(shifted_x,
shifts=(self.shift_size, self.shift_size),
dims=(1, 2))
else:
x = shifted_x
if pad_r > 0 or pad_b > 0:
x = x[:, :H, :W, :].contiguous()
x = x.view(B, H * W, C)
# FFN
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
""" Patch Merging Layer
Args:
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = x.view(B, H, W, C)
# padding
pad_input = (H % 2 == 1) or (W % 2 == 1)
if pad_input:
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class BasicLayer(nn.Module):
""" A basic Swin Transformer layer for one stage.
Args:
dim (int): Number of feature channels
depth (int): Depths of this stage.
num_heads (int): Number of attention head.
window_size (int): Local window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
dim,
depth,
num_heads,
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop=0.,
attn_drop=0.,
drop_path=0.,
norm_layer=nn.LayerNorm,
downsample=None,
use_checkpoint=False):
super().__init__()
self.window_size = window_size
self.shift_size = window_size // 2
self.depth = depth
self.use_checkpoint = use_checkpoint
# build blocks
self.blocks = nn.ModuleList([
SwinTransformerBlock(dim=dim,
num_heads=num_heads,
window_size=window_size,
shift_size=0 if
(i % 2 == 0) else window_size // 2,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop,
attn_drop=attn_drop,
drop_path=drop_path[i] if isinstance(
drop_path, list) else drop_path,
norm_layer=norm_layer) for i in range(depth)
])
# patch merging layer
if downsample is not None:
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
else:
self.downsample = None
def forward(self, x, H, W):
""" Forward function.
Args:
x: Input feature, tensor size (B, H*W, C).
H, W: Spatial resolution of the input feature.
"""
# calculate attention mask for SW-MSA
Hp = int(np.ceil(H / self.window_size)) * self.window_size
Wp = int(np.ceil(W / self.window_size)) * self.window_size
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
h_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
w_slices = (slice(0, -self.window_size),
slice(-self.window_size,
-self.shift_size), slice(-self.shift_size, None))
cnt = 0
for h in h_slices:
for w in w_slices:
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(
img_mask, self.window_size) # nW, window_size, window_size, 1
mask_windows = mask_windows.view(-1,
self.window_size * self.window_size)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0,
float(-100.0)).masked_fill(
attn_mask == 0, float(0.0))
for blk in self.blocks:
blk.H, blk.W = H, W
if self.use_checkpoint:
x = checkpoint.checkpoint(blk, x, attn_mask)
else:
x = blk(x, attn_mask)
if self.downsample is not None:
x_down = self.downsample(x, H, W)
Wh, Ww = (H + 1) // 2, (W + 1) // 2
return x, H, W, x_down, Wh, Ww
else:
return x, H, W, x, H, W
class PatchEmbed(nn.Module):
""" Image to Patch Embedding
Args:
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(self,
patch_size=4,
in_chans=3,
embed_dim=96,
norm_layer=None):
super().__init__()
patch_size = to_2tuple(patch_size)
self.patch_size = patch_size
self.in_chans = in_chans
self.embed_dim = embed_dim
self.proj = nn.Conv2d(in_chans,
embed_dim,
kernel_size=patch_size,
stride=patch_size)
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
"""Forward function."""
# padding
_, _, H, W = x.size()
if W % self.patch_size[1] != 0:
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
if H % self.patch_size[0] != 0:
x = F.pad(x,
(0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
x = self.proj(x) # B C Wh Ww
if self.norm is not None:
Wh, Ww = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
return x
class SwinTransformer(nn.Module):
""" Swin Transformer backbone.
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
https://arxiv.org/pdf/2103.14030
Args:
pretrain_img_size (int): Input image size for training the pretrained model,
used in absolute postion embedding. Default 224.
patch_size (int | tuple(int)): Patch size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
depths (tuple[int]): Depths of each Swin Transformer stage.
num_heads (tuple[int]): Number of attention head of each stage.
window_size (int): Window size. Default: 7.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
drop_rate (float): Dropout rate.
attn_drop_rate (float): Attention dropout rate. Default: 0.
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
out_indices (Sequence[int]): Output from which stages.
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
-1 means not freezing any parameters.
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
"""
def __init__(self,
pretrain_img_size=224,
patch_size=4,
in_chans=3,
embed_dim=96,
depths=[2, 2, 6, 2],
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4.,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.2,
norm_layer=nn.LayerNorm,
ape=False,
patch_norm=True,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
use_checkpoint=False):
super().__init__()
self.pretrain_img_size = pretrain_img_size
self.num_layers = len(depths)
self.embed_dim = embed_dim
self.ape = ape
self.patch_norm = patch_norm
self.out_indices = out_indices
self.frozen_stages = frozen_stages
# split image into non-overlapping patches
self.patch_embed = PatchEmbed(
patch_size=patch_size,
in_chans=in_chans,
embed_dim=embed_dim,
norm_layer=norm_layer if self.patch_norm else None)
# absolute position embedding
if self.ape:
pretrain_img_size = to_2tuple(pretrain_img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
pretrain_img_size[0] // patch_size[0],
pretrain_img_size[1] // patch_size[1]
]
self.absolute_pos_embed = nn.Parameter(
torch.zeros(1, embed_dim, patches_resolution[0],
patches_resolution[1]))
trunc_normal_(self.absolute_pos_embed, std=.02)
self.pos_drop = nn.Dropout(p=drop_rate)
# stochastic depth
dpr = [
x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))
] # stochastic depth decay rule
# build layers
self.layers = nn.ModuleList()
for i_layer in range(self.num_layers):
layer = BasicLayer(
dim=int(embed_dim * 2**i_layer),
depth=depths[i_layer],
num_heads=num_heads[i_layer],
window_size=window_size,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
drop=drop_rate,
attn_drop=attn_drop_rate,
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
norm_layer=norm_layer,
downsample=PatchMerging if
(i_layer < self.num_layers - 1) else None,
use_checkpoint=use_checkpoint)
self.layers.append(layer)
num_features = [int(embed_dim * 2**i) for i in range(self.num_layers)]
self.num_features = num_features
# add a norm layer for each output
for i_layer in out_indices:
layer = norm_layer(num_features[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self._freeze_stages()
def _freeze_stages(self):
if self.frozen_stages >= 0:
self.patch_embed.eval()
for param in self.patch_embed.parameters():
param.requires_grad = False
if self.frozen_stages >= 1 and self.ape:
self.absolute_pos_embed.requires_grad = False
if self.frozen_stages >= 2:
self.pos_drop.eval()
for i in range(0, self.frozen_stages - 1):
m = self.layers[i]
m.eval()
for param in m.parameters():
param.requires_grad = False
def init_weights(self, pretrained=None):
"""Initialize the weights in backbone.
Args:
pretrained (str, optional): Path to pre-trained weights.
Defaults to None.
"""
def _init_weights(m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
if isinstance(pretrained, str):
self.apply(_init_weights)
# logger = get_root_logger()
load_checkpoint(self, pretrained, strict=False, logger=None)
elif pretrained is None:
self.apply(_init_weights)
else:
raise TypeError('pretrained must be a str or None')
def forward(self, x):
x = self.patch_embed(x)
Wh, Ww = x.size(2), x.size(3)
if self.ape:
# interpolate the position embedding to the corresponding size
absolute_pos_embed = F.interpolate(self.absolute_pos_embed,
size=(Wh, Ww),
mode='bicubic')
x = (x + absolute_pos_embed) # B Wh*Ww C
outs = [x.contiguous()]
x = x.flatten(2).transpose(1, 2)
x = self.pos_drop(x)
for i in range(self.num_layers):
layer = self.layers[i]
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
if i in self.out_indices:
norm_layer = getattr(self, f'norm{i}')
x_out = norm_layer(x_out)
out = x_out.view(-1, H, W,
self.num_features[i]).permute(0, 3, 1,
2).contiguous()
outs.append(out)
return tuple(outs)
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(SwinTransformer, self).train(mode)
self._freeze_stages()
#+end_src
* Main code
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
import os
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
HOME_DIR = os.environ.get('HOME', '/root')
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
import sys
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
from datetime import datetime
import argparse
import numpy as np
import random
import math
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
import cv2
from PIL import Image
from PIL import ImageEnhance
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
from einops import rearrange
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from torch.autograd import Variable
from torch.backends import cudnn
from torch.cuda import amp
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
from prodigyopt import Prodigy
#+end_src
** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
# from model.MVANet import MVANet
from swin import SwinB
#+end_src
** train.function.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py
def get_activation_fn(activation):
"""Return an activation function given a string"""
if activation == "relu":
return F.relu
if activation == "gelu":
return F.gelu
if activation == "glu":
return F.glu
raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
def make_cbr(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
nn.BatchNorm2d(out_dim), nn.PReLU())
def make_cbg(in_dim, out_dim):
return nn.Sequential(nn.Conv2d(in_dim, out_dim, kernel_size=3, padding=1),
nn.BatchNorm2d(out_dim), nn.GELU())
def rescale_to(x, scale_factor: float = 2, interpolation='nearest'):
return F.interpolate(x, scale_factor=scale_factor, mode=interpolation)
def resize_as(x, y, interpolation='bilinear'):
return F.interpolate(x, size=y.shape[-2:], mode=interpolation)
def image2patches(x):
"""b c (hg h) (wg w) -> (hg wg b) c h w"""
x = rearrange(x, 'b c (hg h) (wg w) -> (hg wg b) c h w', hg=2, wg=2)
return x
def patches2image(x):
"""(hg wg b) c h w -> b c (hg h) (wg w)"""
x = rearrange(x, '(hg wg b) c h w -> b c (hg h) (wg w)', hg=2, wg=2)
return x
def structure_loss(pred, mask):
weit = 1 + 5 * torch.abs(
F.avg_pool2d(mask, kernel_size=31, stride=1, padding=15) - mask)
wbce = F.binary_cross_entropy_with_logits(pred, mask, reduction='none')
wbce = (weit * wbce).sum(dim=(2, 3)) / weit.sum(dim=(2, 3))
pred = torch.sigmoid(pred)
inter = ((pred * mask) * weit).sum(dim=(2, 3))
union = ((pred + mask) * weit).sum(dim=(2, 3))
wiou = 1 - (inter + 1) / (union - inter + 1)
return (wbce + wiou).mean()
def clip_gradient(optimizer, grad_clip):
for group in optimizer.param_groups:
for param in group['params']:
if param.grad is not None:
param.grad.data.clamp_(-grad_clip, grad_clip)
def adjust_lr(optimizer, init_lr, epoch, decay_rate=0.1, decay_epoch=5):
decay = decay_rate**(epoch // decay_epoch)
for param_group in optimizer.param_groups:
param_group['lr'] *= decay
def truncated_normal_(tensor, mean=0, std=1):
size = tensor.shape
tmp = tensor.new_empty(size + (4, )).normal_()
valid = (tmp < 2) & (tmp > -2)
ind = valid.max(-1, keepdim=True)[1]
tensor.data.copy_(tmp.gather(-1, ind).squeeze(-1))
tensor.data.mul_(std).add_(mean)
def init_weights(m):
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu')
#nn.init.normal_(m.weight, std=0.001)
#nn.init.normal_(m.bias, std=0.001)
truncated_normal_(m.bias, mean=0, std=0.001)
def init_weights_orthogonal_normal(m):
if type(m) == nn.Conv2d or type(m) == nn.ConvTranspose2d:
nn.init.orthogonal_(m.weight)
truncated_normal_(m.bias, mean=0, std=0.001)
#nn.init.normal_(m.bias, std=0.001)
def l2_regularisation(m):
l2_reg = None
for W in m.parameters():
if l2_reg is None:
l2_reg = W.norm(2)
else:
l2_reg = l2_reg + W.norm(2)
return l2_reg
def check_mkdir(dir_name):
if not os.path.isdir(dir_name):
os.makedirs(dir_name)
# several data augumentation strategies
def cv_random_flip(img, label):
flip_flag = random.randint(0, 1)
flip_flag2 = random.randint(0, 1)
# left right flip
if flip_flag == 1:
img = img.transpose(Image.FLIP_LEFT_RIGHT)
label = label.transpose(Image.FLIP_LEFT_RIGHT)
# top bottom flip
if flip_flag2 == 1:
img = img.transpose(Image.FLIP_TOP_BOTTOM)
label = label.transpose(Image.FLIP_TOP_BOTTOM)
return img, label
def random_crop_full(image, X, Y, TX, TY):
image_width = image.size[0]
image_height = image.size[1]
final_width = image_width * TX
final_height = image_height * TY
start_x = (1.0 - TX) * X * image_width
start_y = (1.0 - TY) * Y * image_height
random_region = (start_x, start_y, start_x + final_width,
start_y + final_height)
return image.crop(random_region)
def random_crop(image, X, Y, T):
image_width = image.size[0]
image_height = image.size[1]
final_width = image_width * T
final_height = image_height * T
start_x = (1.0 - T) * X * image_width
start_y = (1.0 - T) * Y * image_height
random_region = (start_x, start_y, start_x + final_width,
start_y + final_height)
return image.crop(random_region)
def garment_color_jitter(image, mask):
image = np.array(image)
mask = np.array(mask)
mask = (mask > 127).astype(dtype=np.uint8)
image = cv2.cvtColor(src=image, code=cv2.COLOR_RGB2HSV_FULL)
image[:, :, 0] += mask * np.random.randint(0, 255)
image = cv2.cvtColor(src=image, code=cv2.COLOR_HSV2RGB_FULL)
image = Image.fromarray(image)
return image
def garment_color_jitter_rotate(image, mask, rotate_index=0, shift_amount=0):
image = np.array(image)
mask = np.array(mask)
if rotate_index == 1:
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_90_CLOCKWISE)
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_CLOCKWISE)
elif rotate_index == 2:
image = cv2.rotate(src=image, rotateCode=cv2.ROTATE_180)
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_180)
elif rotate_index == 3:
image = cv2.rotate(src=image,
rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE)
mask = cv2.rotate(src=mask, rotateCode=cv2.ROTATE_90_COUNTERCLOCKWISE)
image = cv2.cvtColor(src=image,
code=cv2.COLOR_RGB2HSV_FULL).astype(dtype=np.int32)
# image[:, :, 0] += mask_tmp * shift_amount
image[:, :, 0] += shift_amount
image[:, :, 0] %= 255
image = cv2.cvtColor(src=image.astype(np.uint8),
code=cv2.COLOR_HSV2RGB_FULL)
image = Image.fromarray(image)
mask = Image.fromarray(mask)
return image, mask
def randomCrop_Both(image, label):
image, label = garment_color_jitter_rotate(
image=image,
mask=label,
rotate_index=np.random.randint(0, 4),
shift_amount=np.random.randint(-4, +4),
)
TX = (np.random.rand() * 0.6) + 0.4
TY = (np.random.rand() * 0.6) + 0.4
X = np.random.rand()
Y = np.random.rand()
return random_crop_full(image, X, Y, TX,
TY), random_crop_full(label, X, Y, TX, TY)
def randomCrop_Old(image, label):
# image, label = garment_color_jitter_rotate(
# image=image,
# mask=label,
# rotate_index=np.random.randint(0, 4),
# shift_amount=np.random.randint(0, 256))
# image, label = garment_color_jitter_rotate(
# image=image,
# mask=label,
# rotate_index=np.random.randint(0, 4),
# shift_amount=0,
# )
T = (np.random.rand() * 0.6) + 0.4
X = np.random.rand()
Y = np.random.rand()
return random_crop(image, X, Y, T), random_crop(label, X, Y, T)
def randomCrop(image, label):
return randomCrop_Both(image, label)
def randomCrop_original(image, label):
image_width = image.size[0]
image_height = image.size[1]
border = min(image_width, image_height) // 2
crop_win_width = np.random.randint(image_width - border, image_width)
crop_win_height = np.random.randint(image_height - border, image_height)
random_region = ((image_width - crop_win_width) >> 1,
(image_height - crop_win_height) >> 1,
(image_width + crop_win_width) >> 1,
(image_height + crop_win_height) >> 1)
return image.crop(random_region), label.crop(random_region)
def randomRotation(image, label):
mode = Image.BICUBIC
if random.random() > 0.8:
random_angle = np.random.randint(-15, 15)
image = image.rotate(random_angle, mode)
label = label.rotate(random_angle, mode)
return image, label
def colorEnhance(image):
bright_intensity = random.randint(5, 15) / 10.0
image = ImageEnhance.Brightness(image).enhance(bright_intensity)
contrast_intensity = random.randint(5, 15) / 10.0
image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
color_intensity = random.randint(0, 20) / 10.0
image = ImageEnhance.Color(image).enhance(color_intensity)
sharp_intensity = random.randint(0, 30) / 10.0
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
return image
def randomGaussian(image, mean=0.1, sigma=0.35):
def gaussianNoisy(im, mean=mean, sigma=sigma):
for _i in range(len(im)):
im[_i] += random.gauss(mean, sigma)
return im
img = np.asarray(image)
width, height = img.shape
img = gaussianNoisy(img[:].flatten(), mean, sigma)
img = img.reshape([width, height])
return Image.fromarray(np.uint8(img))
def randomPeper(img):
img = np.array(img)
noiseNum = int(0.0015 * img.shape[0] * img.shape[1])
for i in range(noiseNum):
randX = random.randint(0, img.shape[0] - 1)
randY = random.randint(0, img.shape[1] - 1)
if random.randint(0, 1) == 0:
img[randX, randY] = 0
else:
img[randX, randY] = 255
return Image.fromarray(img)
# dataloader for training
def get_loader(image_root,
gt_root,
batchsize,
trainsize,
shuffle=True,
num_workers=12,
pin_memory=False):
print('DEBUG 6')
dataset = DISDataset(image_root, gt_root, trainsize)
print('DEBUG 7')
data_loader = data.DataLoader(dataset=dataset,
batch_size=batchsize,
shuffle=shuffle,
num_workers=num_workers,
pin_memory=pin_memory)
print('DEBUG 8')
return data_loader
#+end_src
** train.class.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
class AvgMeter(object):
def __init__(self, num=40):
self.num = num
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
self.losses = []
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
self.losses.append(val)
def show(self):
a = len(self.losses)
b = np.maximum(a - self.num, 0)
c = self.losses[b:]
#print(c)
#d = torch.mean(torch.stack(c))
#print(d)
return torch.mean(torch.stack(c))
class Running_Avg(object):
def __init__(self, weight=0.999):
self.weight = weight
self.reset()
def reset(self):
self.n = 0
self.val = 0
def update(self, val, n=1):
self.val = (self.weight * self.val) + ((1 - self.weight) * val)
self.n = (self.weight * self.n) + ((1 - self.weight) * n)
def show(self):
if self.n == 0:
return 0
else:
return self.val / self.n
#+end_src
** Main training dataset
*** COMMENT Original
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
# dataset for training
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved.
class DISDataset(data.Dataset):
def __init__(self, image_root, gt_root, trainsize):
self.trainsize = trainsize
self.images = [
image_root + f for f in os.listdir(image_root)
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif')
]
self.gts = [
gt_root + f for f in os.listdir(gt_root)
if f.endswith('.jpg') or f.endswith('.png') or f.endswith('tif')
]
self.images = sorted(self.images)
self.gts = sorted(self.gts)
self.filter_files()
self.size = len(self.images)
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()
])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
image, gt = cv_random_flip(image, gt)
image, gt = randomCrop(image, gt)
image, gt = randomRotation(image, gt)
image = colorEnhance(image)
image = self.img_transform(image)
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts) and len(self.gts) == len(
self.images)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h),
Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
#+end_src
*** Changed
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
# dataset for training
# The current loader is not using the normalized depth maps for training and test. If you use the normalized depth maps
# (e.g., 0 represents background and 1 represents foreground.), the performance will be further improved.
class DISDataset(data.Dataset):
def __init__(self, image_root, gt_root, trainsize):
self.trainsize = trainsize
end_pattern = '_segm.png'
files = list(f for f in os.listdir(gt_root) if f.endswith(end_pattern))
files.sort()
self.gts = list(gt_root + f for f in files)
self.images = list(image_root + f[0:-len(end_pattern)] + '.jpg'
for f in files)
self.size = len(self.images)
self.img_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
self.gt_transform = transforms.Compose([
transforms.Resize((self.trainsize, self.trainsize)),
transforms.ToTensor()
])
def __getitem__(self, index):
image = self.rgb_loader(self.images[index])
gt = self.binary_loader(self.gts[index])
image, gt = cv_random_flip(image, gt)
image, gt = randomCrop(image, gt)
image, gt = randomRotation(image, gt)
image = colorEnhance(image)
image = self.img_transform(image)
gt = self.gt_transform(gt)
return image, gt
def filter_files(self):
assert len(self.images) == len(self.gts) and len(self.gts) == len(
self.images)
images = []
gts = []
for img_path, gt_path in zip(self.images, self.gts):
img = Image.open(img_path)
gt = Image.open(gt_path)
if img.size == gt.size:
images.append(img_path)
gts.append(gt_path)
self.images = images
self.gts = gts
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
def resize(self, img, gt):
assert img.size == gt.size
w, h = img.size
if h < self.trainsize or w < self.trainsize:
h = max(h, self.trainsize)
w = max(w, self.trainsize)
return img.resize((w, h), Image.BILINEAR), gt.resize((w, h),
Image.NEAREST)
else:
return img, gt
def __len__(self):
return self.size
#+end_src
** train.class.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
# test dataset and loader
class test_dataset:
def __init__(self, image_root, depth_root, testsize):
self.testsize = testsize
self.images = [
image_root + f for f in os.listdir(image_root)
if f.endswith('.jpg')
]
self.depths = [
depth_root + f for f in os.listdir(depth_root)
if f.endswith('.bmp') or f.endswith('.png')
]
self.images = sorted(self.images)
self.depths = sorted(self.depths)
self.transform = transforms.Compose([
transforms.Resize((self.testsize, self.testsize)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# self.gt_transform = transforms.Compose([
# transforms.Resize((self.trainsize, self.trainsize)),
# transforms.ToTensor()])
self.depths_transform = transforms.Compose([
transforms.Resize((self.testsize, self.testsize)),
transforms.ToTensor()
])
self.size = len(self.images)
self.index = 0
def load_data(self):
image = self.rgb_loader(self.images[self.index])
HH = image.size[0]
WW = image.size[1]
image = self.transform(image).unsqueeze(0)
depth = self.rgb_loader(self.depths[self.index])
depth = self.depths_transform(depth).unsqueeze(0)
name = self.images[self.index].split('/')[-1]
# image_for_post=self.rgb_loader(self.images[self.index])
# image_for_post=image_for_post.resize(gt.size)
if name.endswith('.jpg'):
name = name.split('.jpg')[0] + '.png'
self.index += 1
self.index = self.index % self.size
return image, depth, HH, WW, name
def rgb_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def binary_loader(self, path):
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('L')
def __len__(self):
return self.size
class PositionEmbeddingSine:
def __init__(self,
num_pos_feats=64,
temperature=10000,
normalize=False,
scale=None):
super().__init__()
self.num_pos_feats = num_pos_feats
self.temperature = temperature
self.normalize = normalize
if scale is not None and normalize is False:
raise ValueError("normalize should be True if scale is passed")
if scale is None:
scale = 2 * math.pi
self.scale = scale
self.dim_t = torch.arange(0,
self.num_pos_feats,
dtype=torch.float32,
device='cuda')
def __call__(self, b, h, w):
mask = torch.zeros([b, h, w], dtype=torch.bool, device='cuda')
assert mask is not None
not_mask = ~mask
y_embed = not_mask.cumsum(dim=1, dtype=torch.float32)
x_embed = not_mask.cumsum(dim=2, dtype=torch.float32)
if self.normalize:
eps = 1e-6
y_embed = ((y_embed - 0.5) / (y_embed[:, -1:, :] + eps) *
self.scale).cuda()
x_embed = ((x_embed - 0.5) / (x_embed[:, :, -1:] + eps) *
self.scale).cuda()
dim_t = self.temperature**(2 * (self.dim_t // 2) / self.num_pos_feats)
pos_x = x_embed[:, :, :, None] / dim_t
pos_y = y_embed[:, :, :, None] / dim_t
pos_x = torch.stack(
(pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()),
dim=4).flatten(3)
pos_y = torch.stack(
(pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()),
dim=4).flatten(3)
return torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
class MCLM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
super(MCLM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear1 = nn.Linear(d_model, d_model * 2)
self.linear2 = nn.Linear(d_model * 2, d_model)
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.activation = get_activation_fn('relu')
self.pool_ratios = pool_ratios
self.p_poses = []
self.g_pos = None
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, l, g):
"""
l: 4,c,h,w
g: 1,c,h,w
"""
b, c, h, w = l.size()
# 4,c,h,w -> 1,c,2h,2w
concated_locs = rearrange(l,
'(hg wg b) c h w -> b c (hg h) (wg w)',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
# b,c,h,w
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
if self.g_pos is None:
pos_emb = self.positional_encoding(pool.shape[0],
pool.shape[2],
pool.shape[3])
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
self.p_poses.append(pos_emb)
pools = torch.cat(pools, 0)
if self.g_pos is None:
self.p_poses = torch.cat(self.p_poses, dim=0)
pos_emb = self.positional_encoding(g.shape[0], g.shape[2],
g.shape[3])
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
# attention between glb (q) & multisensory concated-locs (k,v)
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
g_hw_b_c = self.norm1(g_hw_b_c)
g_hw_b_c = g_hw_b_c + self.dropout2(
self.linear2(
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
g_hw_b_c = self.norm2(g_hw_b_c)
# attention between origin locs (q) & freashed glb (k,v)
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
_g_hw_b_c = rearrange(_g_hw_b_c,
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
ng=2,
nw=2)
outputs_re = []
for i, (_l, _g) in enumerate(
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
outputs_re.append(self.attention[i + 1](_l, _g,
_g)[0]) # (h w) 1 c
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
l_hw_b_c = self.norm1(l_hw_b_c)
l_hw_b_c = l_hw_b_c + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
l_hw_b_c = self.norm2(l_hw_b_c)
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
class inf_MCLM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[1, 4, 8]):
super(inf_MCLM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear1 = nn.Linear(d_model, d_model * 2)
self.linear2 = nn.Linear(d_model * 2, d_model)
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.activation = get_activation_fn('relu')
self.pool_ratios = pool_ratios
self.p_poses = []
self.g_pos = None
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, l, g):
"""
l: 4,c,h,w
g: 1,c,h,w
"""
b, c, h, w = l.size()
# 4,c,h,w -> 1,c,2h,2w
concated_locs = rearrange(l,
'(hg wg b) c h w -> b c (hg h) (wg w)',
hg=2,
wg=2)
self.p_poses = []
pools = []
for pool_ratio in self.pool_ratios:
# b,c,h,w
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(concated_locs, tgt_hw)
pools.append(rearrange(pool, 'b c h w -> (h w) b c'))
# if self.g_pos is None:
pos_emb = self.positional_encoding(pool.shape[0], pool.shape[2],
pool.shape[3])
pos_emb = rearrange(pos_emb, 'b c h w -> (h w) b c')
self.p_poses.append(pos_emb)
pools = torch.cat(pools, 0)
# if self.g_pos is None:
self.p_poses = torch.cat(self.p_poses, dim=0)
pos_emb = self.positional_encoding(g.shape[0], g.shape[2], g.shape[3])
self.g_pos = rearrange(pos_emb, 'b c h w -> (h w) b c')
# attention between glb (q) & multisensory concated-locs (k,v)
g_hw_b_c = rearrange(g, 'b c h w -> (h w) b c')
g_hw_b_c = g_hw_b_c + self.dropout1(self.attention[0](
g_hw_b_c + self.g_pos, pools + self.p_poses, pools)[0])
g_hw_b_c = self.norm1(g_hw_b_c)
g_hw_b_c = g_hw_b_c + self.dropout2(
self.linear2(
self.dropout(self.activation(self.linear1(g_hw_b_c)).clone())))
g_hw_b_c = self.norm2(g_hw_b_c)
# attention between origin locs (q) & freashed glb (k,v)
l_hw_b_c = rearrange(l, "b c h w -> (h w) b c")
_g_hw_b_c = rearrange(g_hw_b_c, '(h w) b c -> h w b c', h=h, w=w)
_g_hw_b_c = rearrange(_g_hw_b_c,
"(ng h) (nw w) b c -> (h w) (ng nw b) c",
ng=2,
nw=2)
outputs_re = []
for i, (_l, _g) in enumerate(
zip(l_hw_b_c.chunk(4, dim=1), _g_hw_b_c.chunk(4, dim=1))):
outputs_re.append(self.attention[i + 1](_l, _g,
_g)[0]) # (h w) 1 c
outputs_re = torch.cat(outputs_re, 1) # (h w) 4 c
l_hw_b_c = l_hw_b_c + self.dropout1(outputs_re)
l_hw_b_c = self.norm1(l_hw_b_c)
l_hw_b_c = l_hw_b_c + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(l_hw_b_c)).clone())))
l_hw_b_c = self.norm2(l_hw_b_c)
l = torch.cat((l_hw_b_c, g_hw_b_c), 1) # hw,b(5),c
return rearrange(l, "(h w) b c -> b c h w", h=h, w=w) ## (5,c,h*w)
class MCRM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
super(MCRM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.sigmoid = nn.Sigmoid()
self.activation = get_activation_fn('relu')
self.sal_conv = nn.Conv2d(d_model, 1, 1)
self.pool_ratios = pool_ratios
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, x):
b, c, h, w = x.size()
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
# b(4),c,h,w
patched_glb = rearrange(glb,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
# generate token attention map
token_attention_map = self.sigmoid(self.sal_conv(glb))
token_attention_map = F.interpolate(token_attention_map,
size=patches2image(loc).shape[-2:],
mode='nearest')
loc = loc * rearrange(token_attention_map,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
pools.append(rearrange(pool,
'nl c h w -> nl c (h w)')) # nl(4),c,hw
# nl(4),c,nphw -> nl(4),nphw,1,c
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
outputs = []
for i, q in enumerate(
loc_.unbind(dim=0)): # traverse all local patches
# np*hw,1,c
v = pools[i]
k = v
outputs.append(self.attention[i](q, k, v)[0])
outputs = torch.cat(outputs, 1)
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
src = self.norm1(src)
src = src + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(src)).clone())))
src = self.norm2(src)
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
glb = glb + F.interpolate(patches2image(src),
size=glb.shape[-2:],
mode='nearest') # freshed glb
return torch.cat((src, glb), 0), token_attention_map
class inf_MCRM(nn.Module):
def __init__(self, d_model, num_heads, pool_ratios=[4, 8, 16], h=None):
super(inf_MCRM, self).__init__()
self.attention = nn.ModuleList([
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1),
nn.MultiheadAttention(d_model, num_heads, dropout=0.1)
])
self.linear3 = nn.Linear(d_model, d_model * 2)
self.linear4 = nn.Linear(d_model * 2, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(0.1)
self.dropout1 = nn.Dropout(0.1)
self.dropout2 = nn.Dropout(0.1)
self.sigmoid = nn.Sigmoid()
self.activation = get_activation_fn('relu')
self.sal_conv = nn.Conv2d(d_model, 1, 1)
self.pool_ratios = pool_ratios
self.positional_encoding = PositionEmbeddingSine(
num_pos_feats=d_model // 2, normalize=True)
def forward(self, x):
b, c, h, w = x.size()
loc, glb = x.split([4, 1], dim=0) # 4,c,h,w; 1,c,h,w
# b(4),c,h,w
patched_glb = rearrange(glb,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
# generate token attention map
token_attention_map = self.sigmoid(self.sal_conv(glb))
token_attention_map = F.interpolate(token_attention_map,
size=patches2image(loc).shape[-2:],
mode='nearest')
loc = loc * rearrange(token_attention_map,
'b c (hg h) (wg w) -> (hg wg b) c h w',
hg=2,
wg=2)
pools = []
for pool_ratio in self.pool_ratios:
tgt_hw = (round(h / pool_ratio), round(w / pool_ratio))
pool = F.adaptive_avg_pool2d(patched_glb, tgt_hw)
pools.append(rearrange(pool,
'nl c h w -> nl c (h w)')) # nl(4),c,hw
# nl(4),c,nphw -> nl(4),nphw,1,c
pools = rearrange(torch.cat(pools, 2), "nl c nphw -> nl nphw 1 c")
loc_ = rearrange(loc, 'nl c h w -> nl (h w) 1 c')
outputs = []
for i, q in enumerate(
loc_.unbind(dim=0)): # traverse all local patches
# np*hw,1,c
v = pools[i]
k = v
outputs.append(self.attention[i](q, k, v)[0])
outputs = torch.cat(outputs, 1)
src = loc.view(4, c, -1).permute(2, 0, 1) + self.dropout1(outputs)
src = self.norm1(src)
src = src + self.dropout2(
self.linear4(
self.dropout(self.activation(self.linear3(src)).clone())))
src = self.norm2(src)
src = src.permute(1, 2, 0).reshape(4, c, h, w) # freshed loc
glb = glb + F.interpolate(patches2image(src),
size=glb.shape[-2:],
mode='nearest') # freshed glb
return torch.cat((src, glb), 0)
# model for single-scale training
class MVANet(nn.Module):
def __init__(self):
super().__init__()
self.backbone = SwinB(pretrained=True)
emb_dim = 128
self.sideout5 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout4 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout3 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout2 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.sideout1 = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
self.output5 = make_cbr(1024, emb_dim)
self.output4 = make_cbr(512, emb_dim)
self.output3 = make_cbr(256, emb_dim)
self.output2 = make_cbr(128, emb_dim)
self.output1 = make_cbr(128, emb_dim)
self.multifieldcrossatt = MCLM(emb_dim, 1, [1, 4, 8])
self.conv1 = make_cbr(emb_dim, emb_dim)
self.conv2 = make_cbr(emb_dim, emb_dim)
self.conv3 = make_cbr(emb_dim, emb_dim)
self.conv4 = make_cbr(emb_dim, emb_dim)
self.dec_blk1 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk2 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk3 = MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk4 = MCRM(emb_dim, 1, [2, 4, 8])
self.insmask_head = nn.Sequential(
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384), nn.PReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
self.shallow = nn.Sequential(
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
self.upsample1 = make_cbg(emb_dim, emb_dim)
self.upsample2 = make_cbg(emb_dim, emb_dim)
self.output = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
shallow = self.shallow(x)
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
loc = image2patches(x)
input = torch.cat((loc, glb), dim=0)
feature = self.backbone(input)
e5 = self.output5(feature[4]) # (5,128,16,16)
e4 = self.output4(feature[3]) # (5,128,32,32)
e3 = self.output3(feature[2]) # (5,128,64,64)
e2 = self.output2(feature[1]) # (5,128,128,128)
e1 = self.output1(feature[0]) # (5,128,128,128)
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
e5 = self.multifieldcrossatt(loc_e5, glb_e5) # (4,128,16,16)
e4, tokenattmap4 = self.dec_blk4(e4 + resize_as(e5, e4))
e4 = self.conv4(e4)
e3, tokenattmap3 = self.dec_blk3(e3 + resize_as(e4, e3))
e3 = self.conv3(e3)
e2, tokenattmap2 = self.dec_blk2(e2 + resize_as(e3, e2))
e2 = self.conv2(e2)
e1, tokenattmap1 = self.dec_blk1(e1 + resize_as(e2, e1))
e1 = self.conv1(e1)
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
output1_cat = patches2image(loc_e1) # (1,128,256,256)
# add glb feat in
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
# merge
final_output = self.insmask_head(output1_cat) # (1,128,256,256)
# shallow feature merge
final_output = final_output + resize_as(shallow, final_output)
final_output = self.upsample1(rescale_to(final_output))
final_output = rescale_to(final_output +
resize_as(shallow, final_output))
final_output = self.upsample2(final_output)
final_output = self.output(final_output)
####
sideout5 = self.sideout5(e5).cuda()
sideout4 = self.sideout4(e4)
sideout3 = self.sideout3(e3)
sideout2 = self.sideout2(e2)
sideout1 = self.sideout1(e1)
#######glb_sideouts ######
glb5 = self.sideout5(glb_e5)
glb4 = sideout4[-1, :, :, :].unsqueeze(0)
glb3 = sideout3[-1, :, :, :].unsqueeze(0)
glb2 = sideout2[-1, :, :, :].unsqueeze(0)
glb1 = sideout1[-1, :, :, :].unsqueeze(0)
####### concat 4 to 1 #######
sideout1 = patches2image(sideout1[:-1]).cuda()
sideout2 = patches2image(
sideout2[:-1]).cuda() ####(5,c,h,w) -> (1 c 2h,2w)
sideout3 = patches2image(sideout3[:-1]).cuda()
sideout4 = patches2image(sideout4[:-1]).cuda()
sideout5 = patches2image(sideout5[:-1]).cuda()
if self.training:
return sideout5, sideout4, sideout3, sideout2, sideout1, final_output, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1
else:
return final_output
# model for multi-scale testing
class inf_MVANet(nn.Module):
def __init__(self):
super().__init__()
self.backbone = SwinB(pretrained=True)
emb_dim = 128
self.output5 = make_cbr(1024, emb_dim)
self.output4 = make_cbr(512, emb_dim)
self.output3 = make_cbr(256, emb_dim)
self.output2 = make_cbr(128, emb_dim)
self.output1 = make_cbr(128, emb_dim)
self.multifieldcrossatt = inf_MCLM(emb_dim, 1, [1, 4, 8])
self.conv1 = make_cbr(emb_dim, emb_dim)
self.conv2 = make_cbr(emb_dim, emb_dim)
self.conv3 = make_cbr(emb_dim, emb_dim)
self.conv4 = make_cbr(emb_dim, emb_dim)
self.dec_blk1 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk2 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk3 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.dec_blk4 = inf_MCRM(emb_dim, 1, [2, 4, 8])
self.insmask_head = nn.Sequential(
nn.Conv2d(emb_dim, 384, kernel_size=3, padding=1),
nn.BatchNorm2d(384), nn.PReLU(),
nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.BatchNorm2d(384),
nn.PReLU(), nn.Conv2d(384, emb_dim, kernel_size=3, padding=1))
self.shallow = nn.Sequential(
nn.Conv2d(3, emb_dim, kernel_size=3, padding=1))
self.upsample1 = make_cbg(emb_dim, emb_dim)
self.upsample2 = make_cbg(emb_dim, emb_dim)
self.output = nn.Sequential(
nn.Conv2d(emb_dim, 1, kernel_size=3, padding=1))
for m in self.modules():
if isinstance(m, nn.ReLU) or isinstance(m, nn.Dropout):
m.inplace = True
def forward(self, x):
shallow = self.shallow(x)
glb = rescale_to(x, scale_factor=0.5, interpolation='bilinear')
loc = image2patches(x)
input = torch.cat((loc, glb), dim=0)
feature = self.backbone(input)
e5 = self.output5(feature[4])
e4 = self.output4(feature[3])
e3 = self.output3(feature[2])
e2 = self.output2(feature[1])
e1 = self.output1(feature[0])
print(e5.shape)
loc_e5, glb_e5 = e5.split([4, 1], dim=0)
e5_cat = self.multifieldcrossatt(loc_e5, glb_e5)
e4 = self.conv4(self.dec_blk4(e4 + resize_as(e5_cat, e4)))
e3 = self.conv3(self.dec_blk3(e3 + resize_as(e4, e3)))
e2 = self.conv2(self.dec_blk2(e2 + resize_as(e3, e2)))
e1 = self.conv1(self.dec_blk1(e1 + resize_as(e2, e1)))
loc_e1, glb_e1 = e1.split([4, 1], dim=0)
# after decoder, concat loc features to a whole one, and merge
output1_cat = patches2image(loc_e1)
# add glb feat in
output1_cat = output1_cat + resize_as(glb_e1, output1_cat)
# merge
final_output = self.insmask_head(output1_cat)
# shallow feature merge
final_output = final_output + resize_as(shallow, final_output)
final_output = self.upsample1(rescale_to(final_output))
final_output = rescale_to(final_output +
resize_as(shallow, final_output))
final_output = self.upsample2(final_output)
final_output = self.output(final_output)
return final_output
#+end_src
** train.execute.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py
writer = SummaryWriter()
cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=80, help='epoch number')
parser.add_argument('--lr_gen', type=float, default=1e-5, help='learning rate')
parser.add_argument('--batchsize',
type=int,
default=1,
help='training batch size')
parser.add_argument('--trainsize',
type=int,
default=1024,
help='training dataset size')
parser.add_argument('--decay_rate',
type=float,
default=0.9,
help='decay rate of learning rate')
parser.add_argument('--decay_epoch',
type=int,
default=80,
help='every n epochs decay learning rate')
opt = parser.parse_args()
print('Generator Learning Rate: {}'.format(opt.lr_gen))
# build models
if hasattr(torch.cuda, 'empty_cache'):
torch.cuda.empty_cache()
generator = MVANet()
generator.cuda()
print('DEBUG 3')
pretrained_dict = torch.load(
HOME_DIR +
'/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train/pretrained_model/Model_80.pth',
map_location='cuda')
model_dict = generator.state_dict()
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
generator.load_state_dict(model_dict)
generator_params = generator.parameters()
# generator_optimizer = torch.optim.Adam(generator_params, opt.lr_gen)
generator_optimizer = Prodigy(generator_params, lr=1., weight_decay=0.01)
print('DEBUG 4')
image_root = './data/image/'
gt_root = './data/mask/'
train_loader = get_loader(image_root,
gt_root,
batchsize=opt.batchsize,
trainsize=opt.trainsize)
print('DEBUG 5')
total_step = len(train_loader)
to_pil = transforms.ToPILImage()
## define loss
print('DEBUG 2')
CE = torch.nn.BCELoss()
mse_loss = torch.nn.MSELoss(size_average=True, reduce=True)
size_rates = [1]
criterion = nn.BCEWithLogitsLoss().cuda()
criterion_mae = nn.L1Loss().cuda()
criterion_mse = nn.MSELoss().cuda()
use_fp16 = True
scaler = amp.GradScaler(enabled=use_fp16)
print('DEBUG 1')
for epoch in range(1, opt.epoch + 1):
torch.cuda.empty_cache()
generator.train()
# loss_record = AvgMeter()
loss_record = Running_Avg()
print('Generator Learning Rate: {}'.format(
generator_optimizer.param_groups[0]['lr']))
for i, pack in enumerate(train_loader, start=1):
torch.cuda.empty_cache()
for rate in size_rates:
torch.cuda.empty_cache()
generator_optimizer.zero_grad()
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
trainsize = int(round(opt.trainsize * rate / 32) * 32)
if rate != 1:
images = F.upsample(images,
size=(trainsize, trainsize),
mode='bilinear',
align_corners=True)
gts = F.upsample(gts,
size=(trainsize, trainsize),
mode='bilinear',
align_corners=True)
b, c, h, w = gts.size()
target_1 = F.upsample(gts, size=h // 4, mode='nearest')
target_2 = F.upsample(gts, size=h // 8, mode='nearest').cuda()
target_3 = F.upsample(gts, size=h // 16, mode='nearest').cuda()
target_4 = F.upsample(gts, size=h // 32, mode='nearest').cuda()
target_5 = F.upsample(gts, size=h // 64, mode='nearest').cuda()
with amp.autocast(enabled=use_fp16):
sideout5, sideout4, sideout3, sideout2, sideout1, final, glb5, glb4, glb3, glb2, glb1, tokenattmap4, tokenattmap3, tokenattmap2, tokenattmap1 = generator.forward(
images)
loss1 = structure_loss(sideout5, target_4)
loss2 = structure_loss(sideout4, target_3)
loss3 = structure_loss(sideout3, target_2)
loss4 = structure_loss(sideout2, target_1)
loss5 = structure_loss(sideout1, target_1)
loss6 = structure_loss(final, gts)
loss7 = structure_loss(glb5, target_5)
loss8 = structure_loss(glb4, target_4)
loss9 = structure_loss(glb3, target_3)
loss10 = structure_loss(glb2, target_2)
loss11 = structure_loss(glb1, target_2)
loss12 = structure_loss(tokenattmap4, target_3)
loss13 = structure_loss(tokenattmap3, target_2)
loss14 = structure_loss(tokenattmap2, target_1)
loss15 = structure_loss(tokenattmap1, target_1)
loss = loss1 + loss2 + loss3 + loss4 + loss5 + loss6 + 0.3 * (
loss7 + loss8 + loss9 + loss10 +
loss11) + 0.3 * (loss12 + loss13 + loss14 + loss15)
Loss_loc = loss1 + loss2 + loss3 + loss4 + loss5 + loss6
Loss_glb = loss7 + loss8 + loss9 + loss10 + loss11
Loss_map = loss12 + loss13 + loss14 + loss15
writer.add_scalar('loss', loss.item(),
epoch * len(train_loader) + i)
generator_optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(generator_optimizer)
scaler.update()
if rate == 1:
loss_record.update(loss.data, opt.batchsize)
if i % 10 == 0 or i == total_step:
print(
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], gen Loss: {:.4f}'
.format(datetime.now(), epoch, opt.epoch, i, total_step,
loss_record.show()))
if i % 8000 == 0 or i == total_step:
save_path = './saved_model/'
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(
generator.state_dict(),
save_path + 'Model' + '_%d' % epoch + '_%d' % i + '.pth')
# adjust_lr(generator_optimizer, opt.lr_gen, epoch, opt.decay_rate,
# opt.decay_epoch)
# save checkpoints every 20 epochs
# if epoch % 20 == 0:
if True:
save_path = './saved_model/'
if not os.path.exists(save_path):
os.mkdir(save_path)
save_path = './saved_model/MVANet/'
if not os.path.exists(save_path):
os.mkdir(save_path)
torch.save(generator.state_dict(),
save_path + 'Model' + '_%d' % epoch + '.pth')
#+end_src
* SAMPLE
** train
*** train.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.import.py
#+end_src
*** train.function.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.function.py
#+end_src
*** train.class.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.class.py
#+end_src
*** train.execute.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./train.execute.py
#+end_src
** swin
*** swin.import.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.import.py
#+end_src
*** swin.function.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.function.py
#+end_src
*** swin.class.py
#+begin_src python :shebang #!/usr/bin/python3 :results output :tangle ./swin.class.py
#+end_src
* UNIFY
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./train.unify.sh
. "${HOME}/dbnew.sh"
echo '#!/usr/bin/python3' > './train.py'
cat \
'./train.import.py' \
'./train.function.py' \
'./train.class.py' \
'./train.execute.py' \
| expand | yapf3 \
| grep -v '^#!/usr/bin/python3$' \
>> './train.py' \
;
echo '#!/usr/bin/python3' > './swin.py'
cat \
'./swin.import.py' \
'./swin.function.py' \
'./swin.class.py' \
| expand | yapf3 \
| grep -v '^#!/usr/bin/python3$' \
>> './swin.py' \
;
rm -vf -- \
'./swin.class.py' \
'./swin.function.py' \
'./swin.import.py' \
'./train.class.py' \
'./train.execute.py' \
'./train.function.py' \
'./train.import.py' \
'./train.unify.sh' \
;
#+end_src
* Run
#+begin_src sh :shebang #!/bin/sh :results output :tangle ./run.sh
. "${HOME}/dbnew.sh"
cd "$('dirname' '--' "${0}")"
pip3 install -r './requirements.txt'
python3 ./train.py --batchsize 4
#+end_src
* WORK SPACE
** ELISP
#+begin_src elisp
(save-buffer)
(org-babel-tangle)
(shell-command "./train.unify.sh")
#+end_src
#+RESULTS:
: 0
** SHELL
#+begin_src sh :shebang #!/bin/sh :results output
realpath .
cd /home/asd/GITHUB/aravind-h-v/dreambooth_experiments/cloth_segmentation/MVANet_Train
#+end_src