File size: 2,674 Bytes
a33b379
 
 
d2daf69
 
 
e0fac96
d2daf69
a33b379
d2daf69
 
a33b379
d2daf69
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33b379
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- arbml/mgb2
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small ar - Mohammad AlMarzouq
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0
      type: mozilla-foundation/common_voice_11_0
      config: ar
      split: test
      args: ar
    metrics:
    - type: wer
      value: 43.14
      name: Wer
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: google/fleurs
      type: google/fleurs
      config: ar_eg
      split: test
      args: ar
    metrics:
    - type: wer
      value: 16.69
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openai/whisper-small

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.9750
- Wer: 21.3693

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Wer     |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.3559        | 0.1   | 1000  | 0.9147          | 29.3252 |
| 0.3154        | 0.2   | 2000  | 1.1353          | 26.5718 |
| 0.359         | 0.3   | 3000  | 0.9208          | 25.3987 |
| 0.273         | 0.4   | 4000  | 0.9591          | 24.3877 |
| 0.2326        | 0.5   | 5000  | 0.9207          | 21.9052 |
| 0.2992        | 1.04  | 6000  | 0.9445          | 22.4556 |
| 0.2265        | 1.14  | 7000  | 0.9660          | 21.2230 |
| 0.2059        | 1.24  | 8000  | 0.9785          | 20.9551 |
| 0.2239        | 1.34  | 9000  | 0.9637          | 21.6300 |
| 0.2163        | 1.44  | 10000 | 0.9750          | 21.3693 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2