File size: 2,116 Bytes
249b6af
655daa5
 
249b6af
 
 
655daa5
 
249b6af
 
 
e874161
249b6af
 
 
 
 
655daa5
249b6af
e874161
249b6af
fd23a4d
 
 
249b6af
655daa5
249b6af
655daa5
249b6af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
---
datasets:
- mozilla-foundation/common_voice_11_0
language:
- ar
license: apache-2.0
metrics:
- wer
tags:
- whisper-event
- generated_from_trainer
- hf-asr-leaderboard
model-index:
- name: Whisper Small ar - Zaid Alyafeai
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: mozilla-foundation/common_voice_11_0
      type: mozilla-foundation/common_voice_11_0
      config: ar
      split: test
      args: ar
    metrics:
    - type: wer
      value: 22.38383004278958
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small ar - Zaid Alyafeai

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3509
- Wer: 22.3838

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2944        | 0.2   | 1000 | 0.4355          | 30.6471 |
| 0.2671        | 0.4   | 2000 | 0.3786          | 25.8539 |
| 0.172         | 1.08  | 3000 | 0.3520          | 23.4573 |
| 0.1043        | 1.28  | 4000 | 0.3542          | 23.3278 |
| 0.0991        | 1.48  | 5000 | 0.3509          | 22.3838 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu116
- Datasets 2.7.1
- Tokenizers 0.13.2