Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +99 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.24 +/- 0.12
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfd7b104d2c933f48b497e0017326887cbbaa1923ffd5b89e19929dc3645450f
|
3 |
+
size 109872
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f780dd6f5e0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f780dd70500>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
15 |
+
"log_std_init": -2,
|
16 |
+
"ortho_init": false,
|
17 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
18 |
+
"optimizer_kwargs": {
|
19 |
+
"alpha": 0.99,
|
20 |
+
"eps": 1e-05,
|
21 |
+
"weight_decay": 0
|
22 |
+
}
|
23 |
+
},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
26 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
27 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
28 |
+
"_shape": null,
|
29 |
+
"dtype": null,
|
30 |
+
"_np_random": null
|
31 |
+
},
|
32 |
+
"action_space": {
|
33 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
34 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
35 |
+
"dtype": "float32",
|
36 |
+
"_shape": [
|
37 |
+
3
|
38 |
+
],
|
39 |
+
"low": "[-1. -1. -1.]",
|
40 |
+
"high": "[1. 1. 1.]",
|
41 |
+
"bounded_below": "[ True True True]",
|
42 |
+
"bounded_above": "[ True True True]",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 4,
|
46 |
+
"num_timesteps": 1000000,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1680511862021388323,
|
52 |
+
"learning_rate": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwhkAXwAFABTAJRORz9PdRBNVR1phpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMC00MWU1N2IyNTE5YWU+lIwCbHKUSwFDAgABlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"tensorboard_log": null,
|
57 |
+
"lr_schedule": {
|
58 |
+
":type:": "<class 'function'>",
|
59 |
+
":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwhkAXwAFABTAJRORz9PdRBNVR1phpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMC00MWU1N2IyNTE5YWU+lIwCbHKUSwFDAgABlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
60 |
+
},
|
61 |
+
"_last_obs": {
|
62 |
+
":type:": "<class 'collections.OrderedDict'>",
|
63 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr/55v3+hbb8zG56/SUmEPxcKfb8Uf5M+PlQXPie0Br4O5ga/CRy3P70Bwb+SoU0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADIPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT2UaA5LBEsGhpRoEnSUUpR1Lg==",
|
64 |
+
"achieved_goal": "[[0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]]",
|
65 |
+
"desired_goal": "[[-0.9765424 -0.9282455 -1.235205 ]\n [ 1.0334865 -0.9884352 0.2880789 ]\n [ 0.1477823 -0.1315466 -0.52694786]\n [ 1.4305431 -1.5078655 0.8032466 ]]",
|
66 |
+
"observation": "[[ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]]"
|
67 |
+
},
|
68 |
+
"_last_episode_starts": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
71 |
+
},
|
72 |
+
"_last_original_obs": {
|
73 |
+
":type:": "<class 'collections.OrderedDict'>",
|
74 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Vb2O5ubyjzzC1E+3xuQvUdHtD0765E+Aw2wPetrEb6gNHY+J7TJPfGQAj5KBBU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
75 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
76 |
+
"desired_goal": "[[ 0.00751768 0.0247324 0.20414715]\n [-0.07036566 0.08802658 0.2849978 ]\n [ 0.08596232 -0.14201324 0.24043512]\n [ 0.09848814 0.12750603 0.03638104]]",
|
77 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
78 |
+
},
|
79 |
+
"_episode_num": 0,
|
80 |
+
"use_sde": true,
|
81 |
+
"sde_sample_freq": -1,
|
82 |
+
"_current_progress_remaining": 0.0,
|
83 |
+
"ep_info_buffer": {
|
84 |
+
":type:": "<class 'collections.deque'>",
|
85 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINIC3QILi0r+UhpRSlIwBbJRLMowBdJRHQKshtThHbyp1fZQoaAZoCWgPQwjH2AkvwanRv5SGlFKUaBVLMmgWR0CrIVGdAgPmdX2UKGgGaAloD0MIyJqRQe4iwr+UhpRSlGgVSzJoFkdAqyD1fsu3+nV9lChoBmgJaA9DCIFB0qdV9NO/lIaUUpRoFUsyaBZHQKsgmh6By0d1fZQoaAZoCWgPQwjT+fAsQUbCv5SGlFKUaBVLMmgWR0CrIua9CeEqdX2UKGgGaAloD0MIRfEqa5vi4L+UhpRSlGgVSzJoFkdAqyKDDZUT+XV9lChoBmgJaA9DCCCWzRySWte/lIaUUpRoFUsyaBZHQKsiJwQUYbd1fZQoaAZoCWgPQwhL6C6JsyLRv5SGlFKUaBVLMmgWR0CrIcvUrkKedX2UKGgGaAloD0MIpikCnN7Fu7+UhpRSlGgVSzJoFkdAqyQIPy08eXV9lChoBmgJaA9DCN3NUx1yM9K/lIaUUpRoFUsyaBZHQKsjpJ+2E011fZQoaAZoCWgPQwjhRPRr66fbv5SGlFKUaBVLMmgWR0CrI0hXCCSSdX2UKGgGaAloD0MIbF7VWS2wt7+UhpRSlGgVSzJoFkdAqyLs3XI2fnV9lChoBmgJaA9DCD3xnC0gtNO/lIaUUpRoFUsyaBZHQKslLLpzLfV1fZQoaAZoCWgPQwipiNNJtrq8v5SGlFKUaBVLMmgWR0CrJMklme18dX2UKGgGaAloD0MISMK+nUSE1r+UhpRSlGgVSzJoFkdAqyRtQdjoZHV9lChoBmgJaA9DCF/ObFfog8G/lIaUUpRoFUsyaBZHQKskEePJaJR1fZQoaAZoCWgPQwgf14aKcf7Cv5SGlFKUaBVLMmgWR0CrJlA5q/M4dX2UKGgGaAloD0MIUWovou2YxL+UhpRSlGgVSzJoFkdAqyXsZrHlwXV9lChoBmgJaA9DCCZV203wTb+/lIaUUpRoFUsyaBZHQKslkFUQ0411fZQoaAZoCWgPQwhkOnR63o3Lv5SGlFKUaBVLMmgWR0CrJTTKcNH6dX2UKGgGaAloD0MIbeS6KeW117+UhpRSlGgVSzJoFkdAqydw0Q9RrXV9lChoBmgJaA9DCEG3lzRG68a/lIaUUpRoFUsyaBZHQKsnDSJCSid1fZQoaAZoCWgPQwgi4uZUMgC0v5SGlFKUaBVLMmgWR0CrJrDzZpSKdX2UKGgGaAloD0MIJSTSNv5Eyb+UhpRSlGgVSzJoFkdAqyZVfPX05HV9lChoBmgJaA9DCJZa7zfacdW/lIaUUpRoFUsyaBZHQKsokPtD2J11fZQoaAZoCWgPQwiJJeXuc3y0v5SGlFKUaBVLMmgWR0CrKC1BUrCndX2UKGgGaAloD0MIoBhZMsfyyL+UhpRSlGgVSzJoFkdAqyfRGpda+3V9lChoBmgJaA9DCGh1cobijs2/lIaUUpRoFUsyaBZHQKsnda4+bEx1fZQoaAZoCWgPQwhpxMw+j1HCv5SGlFKUaBVLMmgWR0CrKbZSFXaKdX2UKGgGaAloD0MItHHEWnwK27+UhpRSlGgVSzJoFkdAqylSzsyBTXV9lChoBmgJaA9DCAETuHU3T8+/lIaUUpRoFUsyaBZHQKso9qRlpXZ1fZQoaAZoCWgPQwg1DYrmASzYv5SGlFKUaBVLMmgWR0CrKJtG3F1kdX2UKGgGaAloD0MIBp0QOugSzr+UhpRSlGgVSzJoFkdAqyra8DjioHV9lChoBmgJaA9DCHjvqDEh5sC/lIaUUpRoFUsyaBZHQKsqd3+uNgl1fZQoaAZoCWgPQwhHWFTE6STBv5SGlFKUaBVLMmgWR0CrKhsH0K7adX2UKGgGaAloD0MIMsozL4fdx7+UhpRSlGgVSzJoFkdAqym/erMkhXV9lChoBmgJaA9DCDIFa5xNR9G/lIaUUpRoFUsyaBZHQKssyJO32El1fZQoaAZoCWgPQwgsu2BwzR3Uv5SGlFKUaBVLMmgWR0CrLGX6AOJ+dX2UKGgGaAloD0MIHk/LD1zlxb+UhpRSlGgVSzJoFkdAqywKtV7x/nV9lChoBmgJaA9DCJ2BkZc1seG/lIaUUpRoFUsyaBZHQKsrsZ7Xxvx1fZQoaAZoCWgPQwhOe0rOiT3Rv5SGlFKUaBVLMmgWR0CrLqvhqCYkdX2UKGgGaAloD0MIJnLBGfz9xL+UhpRSlGgVSzJoFkdAqy5JQBPsRnV9lChoBmgJaA9DCLX/AdaqXd6/lIaUUpRoFUsyaBZHQKst7VYISlF1fZQoaAZoCWgPQwiLpx5pcFvJv5SGlFKUaBVLMmgWR0CrLZLFfiPydX2UKGgGaAloD0MIGHlZEwt817+UhpRSlGgVSzJoFkdAqzB54Y77sXV9lChoBmgJaA9DCOZ1xCEbSMG/lIaUUpRoFUsyaBZHQKswFzVc2R91fZQoaAZoCWgPQwhDHyxjQzfNv5SGlFKUaBVLMmgWR0CrL7uYhMakdX2UKGgGaAloD0MIbToCuFm8xr+UhpRSlGgVSzJoFkdAqy9gtvn8sXV9lChoBmgJaA9DCL/xtWeWBNG/lIaUUpRoFUsyaBZHQKsyapF1B+p1fZQoaAZoCWgPQwgRyCWOPBDQv5SGlFKUaBVLMmgWR0CrMgeAd4mkdX2UKGgGaAloD0MIhIB8CRUc0r+UhpRSlGgVSzJoFkdAqzGsUbkwOHV9lChoBmgJaA9DCK6a54h8l9y/lIaUUpRoFUsyaBZHQKsxUavzOHF1fZQoaAZoCWgPQwgN4C2QoPjcv5SGlFKUaBVLMmgWR0CrNMbbUPQOdX2UKGgGaAloD0MIBDi9i/fj27+UhpRSlGgVSzJoFkdAqzRkJ4SpSHV9lChoBmgJaA9DCG3lJf+Tv8m/lIaUUpRoFUsyaBZHQKs0COVgQYl1fZQoaAZoCWgPQwgCZOjYQSXgv5SGlFKUaBVLMmgWR0CrM7AJkXk6dX2UKGgGaAloD0MITfVk/tE3w7+UhpRSlGgVSzJoFkdAqzZj/XGwR3V9lChoBmgJaA9DCAqd19glqsO/lIaUUpRoFUsyaBZHQKs2AFsYVIt1fZQoaAZoCWgPQwgudCUC1T/bv5SGlFKUaBVLMmgWR0CrNaQw0wajdX2UKGgGaAloD0MI4ltYN94dy7+UhpRSlGgVSzJoFkdAqzVI0qH45HV9lChoBmgJaA9DCK4rZoS3B9O/lIaUUpRoFUsyaBZHQKs3jUtqYZ51fZQoaAZoCWgPQwihoBSt3AvSv5SGlFKUaBVLMmgWR0CrNynIZIhAdX2UKGgGaAloD0MIEhJpG3+i17+UhpRSlGgVSzJoFkdAqzbNchTwUnV9lChoBmgJaA9DCDRIwVPIlcS/lIaUUpRoFUsyaBZHQKs2chVU+9t1fZQoaAZoCWgPQwhk6UMX1LfEv5SGlFKUaBVLMmgWR0CrOKvgvUSadX2UKGgGaAloD0MIrmUyHM9n07+UhpRSlGgVSzJoFkdAqzhINb1RL3V9lChoBmgJaA9DCKhtwygIHr+/lIaUUpRoFUsyaBZHQKs37DGcWj51fZQoaAZoCWgPQwjutDUiGAfTv5SGlFKUaBVLMmgWR0CrN5COmzjWdX2UKGgGaAloD0MIGHsvvmiPwb+UhpRSlGgVSzJoFkdAqznTdgv12HV9lChoBmgJaA9DCL+dRIR/Eci/lIaUUpRoFUsyaBZHQKs5b8v24/h1fZQoaAZoCWgPQwg+k/3zNGDKv5SGlFKUaBVLMmgWR0CrOROA7PpqdX2UKGgGaAloD0MIjZqvko/d1r+UhpRSlGgVSzJoFkdAqzi4HVwxWXV9lChoBmgJaA9DCA+dnndjQb2/lIaUUpRoFUsyaBZHQKs6+64lQdl1fZQoaAZoCWgPQwjarWUyHM/Fv5SGlFKUaBVLMmgWR0CrOpgIyCWedX2UKGgGaAloD0MIYg/tYwW/tb+UhpRSlGgVSzJoFkdAqzo76Hj6vnV9lChoBmgJaA9DCAc/cQD9vta/lIaUUpRoFUsyaBZHQKs54HIIWxh1fZQoaAZoCWgPQwjR6Xk3FhTEv5SGlFKUaBVLMmgWR0CrPB1jZteldX2UKGgGaAloD0MId6IkJNI2wL+UhpRSlGgVSzJoFkdAqzu5jYqXnnV9lChoBmgJaA9DCEoofSHkvNS/lIaUUpRoFUsyaBZHQKs7XW+49X91fZQoaAZoCWgPQwixicxc4PLIv5SGlFKUaBVLMmgWR0CrOwIQOFxodX2UKGgGaAloD0MIQyCXOPJA0L+UhpRSlGgVSzJoFkdAqz09xAB1cXV9lChoBmgJaA9DCLotkQvO4M2/lIaUUpRoFUsyaBZHQKs82gam4y51fZQoaAZoCWgPQwjtKTkn9tDEv5SGlFKUaBVLMmgWR0CrPH21twaSdX2UKGgGaAloD0MI7YFWYMjq1r+UhpRSlGgVSzJoFkdAqzwiM5wOv3V9lChoBmgJaA9DCBIxJZLoZcy/lIaUUpRoFUsyaBZHQKs+XeokzGh1fZQoaAZoCWgPQwhtcY3PZP/Iv5SGlFKUaBVLMmgWR0CrPfp66asqdX2UKGgGaAloD0MIYmU08nnFs7+UhpRSlGgVSzJoFkdAqz2eVmjCYXV9lChoBmgJaA9DCFpKlpNQ+tO/lIaUUpRoFUsyaBZHQKs9QuRs/IN1fZQoaAZoCWgPQwjVeOkmMQjEv5SGlFKUaBVLMmgWR0CrP3g4OtnxdX2UKGgGaAloD0MIbJT1m4np0L+UhpRSlGgVSzJoFkdAqz8UhgVoH3V9lChoBmgJaA9DCDP8pxso8MS/lIaUUpRoFUsyaBZHQKs+uHbAUL51fZQoaAZoCWgPQwiCrn0BvXDRv5SGlFKUaBVLMmgWR0CrPl0PQOWjdX2UKGgGaAloD0MIUU60q5Dy2b+UhpRSlGgVSzJoFkdAq0CazcAR03V9lChoBmgJaA9DCFoO9FDbhrW/lIaUUpRoFUsyaBZHQKtANzdUKiR1fZQoaAZoCWgPQwhiTPp7KTzAv5SGlFKUaBVLMmgWR0CrP9sajvd/dX2UKGgGaAloD0MIZcQFoFG6zr+UhpRSlGgVSzJoFkdAqz9/2oNutXV9lChoBmgJaA9DCNGuQspPqse/lIaUUpRoFUsyaBZHQKtBtKDCgsd1fZQoaAZoCWgPQwgHexNDcjK1v5SGlFKUaBVLMmgWR0CrQVDxb0OFdX2UKGgGaAloD0MIp+oe2Vw1x7+UhpRSlGgVSzJoFkdAq0D0vugHvHV9lChoBmgJaA9DCMy4qYHmc92/lIaUUpRoFUsyaBZHQKtAmVB2Ohl1ZS4="
|
86 |
+
},
|
87 |
+
"ep_success_buffer": {
|
88 |
+
":type:": "<class 'collections.deque'>",
|
89 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
90 |
+
},
|
91 |
+
"_n_updates": 31250,
|
92 |
+
"n_steps": 8,
|
93 |
+
"gamma": 0.99,
|
94 |
+
"gae_lambda": 0.9,
|
95 |
+
"ent_coef": 0.0,
|
96 |
+
"vf_coef": 0.4,
|
97 |
+
"max_grad_norm": 0.5,
|
98 |
+
"normalize_advantage": false
|
99 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43b4e9905992d536c0b883b3c8adb000795a42ed6091928637c521936c32e446
|
3 |
+
size 45438
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a94d37df7d2b584275cc2f3f927bde8baf6b7c400ccdda3e94b26a981f71f8c
|
3 |
+
size 46718
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.9.16
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f780dd6f5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f780dd70500>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1680511862021388323, "learning_rate": {":type:": "<class 'function'>", ":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwhkAXwAFABTAJRORz9PdRBNVR1phpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMC00MWU1N2IyNTE5YWU+lIwCbHKUSwFDAgABlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxAEAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAktDQwhkAXwAFABTAJRORz9PdRBNVR1phpQpjAF4lIWUjB88aXB5dGhvbi1pbnB1dC0xMC00MWU1N2IyNTE5YWU+lIwCbHKUSwFDAgABlCkpdJRSlH2UKIwLX19wYWNrYWdlX1+UTowIX19uYW1lX1+UjAhfX21haW5fX5R1Tk5OdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgWfZR9lChoE2gNjAxfX3F1YWxuYW1lX1+UaA2MD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBSMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UTowXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAyDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/yDzOPuU+jDzGHQ0/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAr/55v3+hbb8zG56/SUmEPxcKfb8Uf5M+PlQXPie0Br4O5ga/CRy3P70Bwb+SoU0/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADIPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT3IPM4+5T6MPMYdDT8puZc93RKcugCGkT2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]\n [0.40280747 0.01711983 0.55123556]]", "desired_goal": "[[-0.9765424 -0.9282455 -1.235205 ]\n [ 1.0334865 -0.9884352 0.2880789 ]\n [ 0.1477823 -0.1315466 -0.52694786]\n [ 1.4305431 -1.5078655 0.8032466 ]]", "observation": "[[ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]\n [ 0.40280747 0.01711983 0.55123556 0.07408363 -0.00119075 0.07105637]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA3Vb2O5ubyjzzC1E+3xuQvUdHtD0765E+Aw2wPetrEb6gNHY+J7TJPfGQAj5KBBU9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.00751768 0.0247324 0.20414715]\n [-0.07036566 0.08802658 0.2849978 ]\n [ 0.08596232 -0.14201324 0.24043512]\n [ 0.09848814 0.12750603 0.03638104]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMINIC3QILi0r+UhpRSlIwBbJRLMowBdJRHQKshtThHbyp1fZQoaAZoCWgPQwjH2AkvwanRv5SGlFKUaBVLMmgWR0CrIVGdAgPmdX2UKGgGaAloD0MIyJqRQe4iwr+UhpRSlGgVSzJoFkdAqyD1fsu3+nV9lChoBmgJaA9DCIFB0qdV9NO/lIaUUpRoFUsyaBZHQKsgmh6By0d1fZQoaAZoCWgPQwjT+fAsQUbCv5SGlFKUaBVLMmgWR0CrIua9CeEqdX2UKGgGaAloD0MIRfEqa5vi4L+UhpRSlGgVSzJoFkdAqyKDDZUT+XV9lChoBmgJaA9DCCCWzRySWte/lIaUUpRoFUsyaBZHQKsiJwQUYbd1fZQoaAZoCWgPQwhL6C6JsyLRv5SGlFKUaBVLMmgWR0CrIcvUrkKedX2UKGgGaAloD0MIpikCnN7Fu7+UhpRSlGgVSzJoFkdAqyQIPy08eXV9lChoBmgJaA9DCN3NUx1yM9K/lIaUUpRoFUsyaBZHQKsjpJ+2E011fZQoaAZoCWgPQwjhRPRr66fbv5SGlFKUaBVLMmgWR0CrI0hXCCSSdX2UKGgGaAloD0MIbF7VWS2wt7+UhpRSlGgVSzJoFkdAqyLs3XI2fnV9lChoBmgJaA9DCD3xnC0gtNO/lIaUUpRoFUsyaBZHQKslLLpzLfV1fZQoaAZoCWgPQwipiNNJtrq8v5SGlFKUaBVLMmgWR0CrJMklme18dX2UKGgGaAloD0MISMK+nUSE1r+UhpRSlGgVSzJoFkdAqyRtQdjoZHV9lChoBmgJaA9DCF/ObFfog8G/lIaUUpRoFUsyaBZHQKskEePJaJR1fZQoaAZoCWgPQwgf14aKcf7Cv5SGlFKUaBVLMmgWR0CrJlA5q/M4dX2UKGgGaAloD0MIUWovou2YxL+UhpRSlGgVSzJoFkdAqyXsZrHlwXV9lChoBmgJaA9DCCZV203wTb+/lIaUUpRoFUsyaBZHQKslkFUQ0411fZQoaAZoCWgPQwhkOnR63o3Lv5SGlFKUaBVLMmgWR0CrJTTKcNH6dX2UKGgGaAloD0MIbeS6KeW117+UhpRSlGgVSzJoFkdAqydw0Q9RrXV9lChoBmgJaA9DCEG3lzRG68a/lIaUUpRoFUsyaBZHQKsnDSJCSid1fZQoaAZoCWgPQwgi4uZUMgC0v5SGlFKUaBVLMmgWR0CrJrDzZpSKdX2UKGgGaAloD0MIJSTSNv5Eyb+UhpRSlGgVSzJoFkdAqyZVfPX05HV9lChoBmgJaA9DCJZa7zfacdW/lIaUUpRoFUsyaBZHQKsokPtD2J11fZQoaAZoCWgPQwiJJeXuc3y0v5SGlFKUaBVLMmgWR0CrKC1BUrCndX2UKGgGaAloD0MIoBhZMsfyyL+UhpRSlGgVSzJoFkdAqyfRGpda+3V9lChoBmgJaA9DCGh1cobijs2/lIaUUpRoFUsyaBZHQKsnda4+bEx1fZQoaAZoCWgPQwhpxMw+j1HCv5SGlFKUaBVLMmgWR0CrKbZSFXaKdX2UKGgGaAloD0MItHHEWnwK27+UhpRSlGgVSzJoFkdAqylSzsyBTXV9lChoBmgJaA9DCAETuHU3T8+/lIaUUpRoFUsyaBZHQKso9qRlpXZ1fZQoaAZoCWgPQwg1DYrmASzYv5SGlFKUaBVLMmgWR0CrKJtG3F1kdX2UKGgGaAloD0MIBp0QOugSzr+UhpRSlGgVSzJoFkdAqyra8DjioHV9lChoBmgJaA9DCHjvqDEh5sC/lIaUUpRoFUsyaBZHQKsqd3+uNgl1fZQoaAZoCWgPQwhHWFTE6STBv5SGlFKUaBVLMmgWR0CrKhsH0K7adX2UKGgGaAloD0MIMsozL4fdx7+UhpRSlGgVSzJoFkdAqym/erMkhXV9lChoBmgJaA9DCDIFa5xNR9G/lIaUUpRoFUsyaBZHQKssyJO32El1fZQoaAZoCWgPQwgsu2BwzR3Uv5SGlFKUaBVLMmgWR0CrLGX6AOJ+dX2UKGgGaAloD0MIHk/LD1zlxb+UhpRSlGgVSzJoFkdAqywKtV7x/nV9lChoBmgJaA9DCJ2BkZc1seG/lIaUUpRoFUsyaBZHQKsrsZ7Xxvx1fZQoaAZoCWgPQwhOe0rOiT3Rv5SGlFKUaBVLMmgWR0CrLqvhqCYkdX2UKGgGaAloD0MIJnLBGfz9xL+UhpRSlGgVSzJoFkdAqy5JQBPsRnV9lChoBmgJaA9DCLX/AdaqXd6/lIaUUpRoFUsyaBZHQKst7VYISlF1fZQoaAZoCWgPQwiLpx5pcFvJv5SGlFKUaBVLMmgWR0CrLZLFfiPydX2UKGgGaAloD0MIGHlZEwt817+UhpRSlGgVSzJoFkdAqzB54Y77sXV9lChoBmgJaA9DCOZ1xCEbSMG/lIaUUpRoFUsyaBZHQKswFzVc2R91fZQoaAZoCWgPQwhDHyxjQzfNv5SGlFKUaBVLMmgWR0CrL7uYhMakdX2UKGgGaAloD0MIbToCuFm8xr+UhpRSlGgVSzJoFkdAqy9gtvn8sXV9lChoBmgJaA9DCL/xtWeWBNG/lIaUUpRoFUsyaBZHQKsyapF1B+p1fZQoaAZoCWgPQwgRyCWOPBDQv5SGlFKUaBVLMmgWR0CrMgeAd4mkdX2UKGgGaAloD0MIhIB8CRUc0r+UhpRSlGgVSzJoFkdAqzGsUbkwOHV9lChoBmgJaA9DCK6a54h8l9y/lIaUUpRoFUsyaBZHQKsxUavzOHF1fZQoaAZoCWgPQwgN4C2QoPjcv5SGlFKUaBVLMmgWR0CrNMbbUPQOdX2UKGgGaAloD0MIBDi9i/fj27+UhpRSlGgVSzJoFkdAqzRkJ4SpSHV9lChoBmgJaA9DCG3lJf+Tv8m/lIaUUpRoFUsyaBZHQKs0COVgQYl1fZQoaAZoCWgPQwgCZOjYQSXgv5SGlFKUaBVLMmgWR0CrM7AJkXk6dX2UKGgGaAloD0MITfVk/tE3w7+UhpRSlGgVSzJoFkdAqzZj/XGwR3V9lChoBmgJaA9DCAqd19glqsO/lIaUUpRoFUsyaBZHQKs2AFsYVIt1fZQoaAZoCWgPQwgudCUC1T/bv5SGlFKUaBVLMmgWR0CrNaQw0wajdX2UKGgGaAloD0MI4ltYN94dy7+UhpRSlGgVSzJoFkdAqzVI0qH45HV9lChoBmgJaA9DCK4rZoS3B9O/lIaUUpRoFUsyaBZHQKs3jUtqYZ51fZQoaAZoCWgPQwihoBSt3AvSv5SGlFKUaBVLMmgWR0CrNynIZIhAdX2UKGgGaAloD0MIEhJpG3+i17+UhpRSlGgVSzJoFkdAqzbNchTwUnV9lChoBmgJaA9DCDRIwVPIlcS/lIaUUpRoFUsyaBZHQKs2chVU+9t1fZQoaAZoCWgPQwhk6UMX1LfEv5SGlFKUaBVLMmgWR0CrOKvgvUSadX2UKGgGaAloD0MIrmUyHM9n07+UhpRSlGgVSzJoFkdAqzhINb1RL3V9lChoBmgJaA9DCKhtwygIHr+/lIaUUpRoFUsyaBZHQKs37DGcWj51fZQoaAZoCWgPQwjutDUiGAfTv5SGlFKUaBVLMmgWR0CrN5COmzjWdX2UKGgGaAloD0MIGHsvvmiPwb+UhpRSlGgVSzJoFkdAqznTdgv12HV9lChoBmgJaA9DCL+dRIR/Eci/lIaUUpRoFUsyaBZHQKs5b8v24/h1fZQoaAZoCWgPQwg+k/3zNGDKv5SGlFKUaBVLMmgWR0CrOROA7PpqdX2UKGgGaAloD0MIjZqvko/d1r+UhpRSlGgVSzJoFkdAqzi4HVwxWXV9lChoBmgJaA9DCA+dnndjQb2/lIaUUpRoFUsyaBZHQKs6+64lQdl1fZQoaAZoCWgPQwjarWUyHM/Fv5SGlFKUaBVLMmgWR0CrOpgIyCWedX2UKGgGaAloD0MIYg/tYwW/tb+UhpRSlGgVSzJoFkdAqzo76Hj6vnV9lChoBmgJaA9DCAc/cQD9vta/lIaUUpRoFUsyaBZHQKs54HIIWxh1fZQoaAZoCWgPQwjR6Xk3FhTEv5SGlFKUaBVLMmgWR0CrPB1jZteldX2UKGgGaAloD0MId6IkJNI2wL+UhpRSlGgVSzJoFkdAqzu5jYqXnnV9lChoBmgJaA9DCEoofSHkvNS/lIaUUpRoFUsyaBZHQKs7XW+49X91fZQoaAZoCWgPQwixicxc4PLIv5SGlFKUaBVLMmgWR0CrOwIQOFxodX2UKGgGaAloD0MIQyCXOPJA0L+UhpRSlGgVSzJoFkdAqz09xAB1cXV9lChoBmgJaA9DCLotkQvO4M2/lIaUUpRoFUsyaBZHQKs82gam4y51fZQoaAZoCWgPQwjtKTkn9tDEv5SGlFKUaBVLMmgWR0CrPH21twaSdX2UKGgGaAloD0MI7YFWYMjq1r+UhpRSlGgVSzJoFkdAqzwiM5wOv3V9lChoBmgJaA9DCBIxJZLoZcy/lIaUUpRoFUsyaBZHQKs+XeokzGh1fZQoaAZoCWgPQwhtcY3PZP/Iv5SGlFKUaBVLMmgWR0CrPfp66asqdX2UKGgGaAloD0MIYmU08nnFs7+UhpRSlGgVSzJoFkdAqz2eVmjCYXV9lChoBmgJaA9DCFpKlpNQ+tO/lIaUUpRoFUsyaBZHQKs9QuRs/IN1fZQoaAZoCWgPQwjVeOkmMQjEv5SGlFKUaBVLMmgWR0CrP3g4OtnxdX2UKGgGaAloD0MIbJT1m4np0L+UhpRSlGgVSzJoFkdAqz8UhgVoH3V9lChoBmgJaA9DCDP8pxso8MS/lIaUUpRoFUsyaBZHQKs+uHbAUL51fZQoaAZoCWgPQwiCrn0BvXDRv5SGlFKUaBVLMmgWR0CrPl0PQOWjdX2UKGgGaAloD0MIUU60q5Dy2b+UhpRSlGgVSzJoFkdAq0CazcAR03V9lChoBmgJaA9DCFoO9FDbhrW/lIaUUpRoFUsyaBZHQKtANzdUKiR1fZQoaAZoCWgPQwhiTPp7KTzAv5SGlFKUaBVLMmgWR0CrP9sajvd/dX2UKGgGaAloD0MIZcQFoFG6zr+UhpRSlGgVSzJoFkdAqz9/2oNutXV9lChoBmgJaA9DCNGuQspPqse/lIaUUpRoFUsyaBZHQKtBtKDCgsd1fZQoaAZoCWgPQwgHexNDcjK1v5SGlFKUaBVLMmgWR0CrQVDxb0OFdX2UKGgGaAloD0MIp+oe2Vw1x7+UhpRSlGgVSzJoFkdAq0D0vugHvHV9lChoBmgJaA9DCMy4qYHmc92/lIaUUpRoFUsyaBZHQKtAmVB2Ohl1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 31250, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (246 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.2364312256744597, "std_reward": 0.11674897264689742, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-04-03T09:56:17.510924"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:574a2b3c1a28241525dd2897eeb9c216009f01e245a5cface4c1184e8f0ba819
|
3 |
+
size 3056
|