Crystalcareai commited on
Commit
8787869
1 Parent(s): fe3e9b4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +32 -0
README.md CHANGED
@@ -16,6 +16,8 @@ datasets:
16
 
17
  Llama-3-SEC is a state-of-the-art domain-specific large language model trained on a vast corpus of SEC (Securities and Exchange Commission) data. Built upon the powerful Meta-Llama-3-70B-Instruct model, Llama-3-SEC has been developed to provide unparalleled insights and analysis capabilities for financial professionals, investors, researchers, and anyone working with SEC filings and related financial data.
18
 
 
 
19
  ## Model Details
20
 
21
  - **Base Model:** Meta-Llama-3-70B-Instruct
@@ -94,6 +96,36 @@ generated_ids = [
94
 
95
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
96
  ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
97
 
98
  ## Limitations and Future Work
99
 
 
16
 
17
  Llama-3-SEC is a state-of-the-art domain-specific large language model trained on a vast corpus of SEC (Securities and Exchange Commission) data. Built upon the powerful Meta-Llama-3-70B-Instruct model, Llama-3-SEC has been developed to provide unparalleled insights and analysis capabilities for financial professionals, investors, researchers, and anyone working with SEC filings and related financial data.
18
 
19
+ GGUFS: https://huggingface.co/arcee-ai/Llama-3-SEC-Chat-GGUF
20
+
21
  ## Model Details
22
 
23
  - **Base Model:** Meta-Llama-3-70B-Instruct
 
96
 
97
  response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
98
  ```
99
+ ## Mergekit Yaml
100
+
101
+ ```yaml
102
+ merge-config}]
103
+ merge_method: ties
104
+ base_model: meta-llama/Meta-Llama-3-70B
105
+ models:
106
+ - model: /home/ubuntu/data/cpt
107
+ parameters:
108
+ weight:
109
+ - filter: mlp
110
+ value: [0.25, 0.5, 0.5, 0.25]
111
+ - filter: self_attn
112
+ value: [0.25, 0.5, 0.5, 0]
113
+ - value: [0.25, 0.5, 0.5, 0.25]
114
+ density: 0.75
115
+ - model: meta-llama/Meta-Llama-3-70B-Instruct
116
+ parameters:
117
+ weight:
118
+ - filter: mlp
119
+ value: [0.75, 0.5, 0.5, 0.75]
120
+ - filter: self_attn
121
+ value: [0.75, 0.5, 0.5, 1]
122
+ - value: [0.75, 0.5, 0.5, 0.75]
123
+ density: 1.0
124
+ parameters:
125
+ normalize: true
126
+ int8_mask: true
127
+ dtype: bfloat16
128
+ ```
129
 
130
  ## Limitations and Future Work
131