Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v3.zip +3 -0
- a2c-PandaReachDense-v3/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v3/data +97 -0
- a2c-PandaReachDense-v3/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v3/policy.pth +3 -0
- a2c-PandaReachDense-v3/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v3/system_info.txt +9 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v3
|
16 |
+
type: PandaReachDense-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -0.18 +/- 0.10
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v3**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1cace66987c46d7da159ee99af1510f135446ca2a9feeee8bb69dcf2e4fa651d
|
3 |
+
size 108131
|
a2c-PandaReachDense-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
a2c-PandaReachDense-v3/data
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c581362f250>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7c581361fd80>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"num_timesteps": 1000000,
|
23 |
+
"_total_timesteps": 1000000,
|
24 |
+
"_num_timesteps_at_start": 0,
|
25 |
+
"seed": null,
|
26 |
+
"action_noise": null,
|
27 |
+
"start_time": 1699827657291499193,
|
28 |
+
"learning_rate": 0.0007,
|
29 |
+
"tensorboard_log": null,
|
30 |
+
"_last_obs": {
|
31 |
+
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANQmPPrhl5TslCeU+1vbpvaJm3747j0++W8CGPzOg9D0aim0+V0bIPGco3z5tThE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQdn4voEcST/QesY/8amavLocjr98uUa/PRecPz7js70Sr8G+gKjtPlzVwD+uHUY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1CY8+uGXlOyUJ5T4K9Pg+tvREu8XjxD7W9um9ombfvjuPT76hGui/MBPXv6otsL9bwIY/M6D0PRqKbT48dZ8/b2OuPbfWor9XRsg8ZyjfPm1OET8u1bE+krDVP5tgiz+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.27936712 0.00700065 0.4473354 ]\n [-0.11424033 -0.4363299 -0.20269482]\n [ 1.0527452 0.11944618 0.23197213]\n [ 0.0244476 0.43585512 0.56760293]]",
|
34 |
+
"desired_goal": "[[-0.48603252 0.7855912 1.5506229 ]\n [-0.01887986 -1.1102517 -0.77626777]\n [ 1.2194592 -0.08783577 -0.3782888 ]\n [ 0.46417618 1.5065112 0.1934726 ]]",
|
35 |
+
"observation": "[[ 0.27936712 0.00700065 0.4473354 0.48623687 -0.00300531 0.38455024]\n [-0.11424033 -0.4363299 -0.20269482 -1.8133126 -1.680273 -1.3763936 ]\n [ 1.0527452 0.11944618 0.23197213 1.2457652 0.08515059 -1.2721776 ]\n [ 0.0244476 0.43585512 0.56760293 0.34732956 1.669451 1.0888857 ]]"
|
36 |
+
},
|
37 |
+
"_last_episode_starts": {
|
38 |
+
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
+
},
|
41 |
+
"_last_original_obs": {
|
42 |
+
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+gLPtbNYL0erl0+G08IvpGvKT1U7RQ+fg5dvWo5hj2X8og+vcG6PauOvz2VemQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[ 0.13663034 -0.0548838 0.21648452]\n [-0.13311426 0.0414272 0.14543658]\n [-0.0539689 0.0655392 0.2674758 ]\n [ 0.09118984 0.09353384 0.22312386]]",
|
46 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
+
},
|
48 |
+
"_episode_num": 0,
|
49 |
+
"use_sde": false,
|
50 |
+
"sde_sample_freq": -1,
|
51 |
+
"_current_progress_remaining": 0.0,
|
52 |
+
"_stats_window_size": 100,
|
53 |
+
"ep_info_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8EV+I/JNj+MAWyUSwKMAXSUR0CmoUDqfOD8dX2UKGgGR7/YkyULUkOaaAdLBGgIR0CmoPEJ8fFKdX2UKGgGR7+89r433pOfaAdLAmgIR0CmoJs/yGzsdX2UKGgGR7/MuaF23azvaAdLA2gIR0Cmoa4nfEXMdX2UKGgGR7/Aa72+PBBSaAdLAmgIR0CmoVIH1OCYdX2UKGgGR7+3PJJXhfjTaAdLAmgIR0CmobwxN7BwdX2UKGgGR7+zm7rcCYCyaAdLAmgIR0CmoV/9pAUtdX2UKGgGR7/Q5LAYYR/WaAdLA2gIR0CmoLGZeAuqdX2UKGgGR7/YSuQp4KQaaAdLBGgIR0CmoRMERraedX2UKGgGR7/RdDpkf9xZaAdLA2gIR0CmodaT4cm0dX2UKGgGR7/SAM2FWXC1aAdLA2gIR0CmoSg9eQdTdX2UKGgGR7/aaWX1J17qaAdLBGgIR0CmoNPpY9xIdX2UKGgGR7/KVEd/8VHnaAdLA2gIR0CmofBlUZNxdX2UKGgGR7/Q3W4EwFkhaAdLA2gIR0CmoUOBczIndX2UKGgGR7/OFXaJyhi9aAdLA2gIR0CmoO3hwVCYdX2UKGgGR7/iIX9BKL88aAdLCGgIR0CmoaQj+rEMdX2UKGgGR7/QUrTYukDZaAdLA2gIR0CmogdfCyhSdX2UKGgGR7+i06YE4ecQaAdLAWgIR0CmoasOf/WEdX2UKGgGR7/DduYQarFPaAdLAmgIR0CmoPxEnb7CdX2UKGgGR7/SUUO/cnE3aAdLA2gIR0Cmoh/JNj9XdX2UKGgGR7/V38GcFyJbaAdLA2gIR0CmocO+yquKdX2UKGgGR7/UzCUHIIWyaAdLBWgIR0CmoWrcj7hvdX2UKGgGR7/QfKp1ie/YaAdLA2gIR0CmoRUSIxgzdX2UKGgGR7+ke2d/axoqaAdLAWgIR0CmoifbKzRhdX2UKGgGR7/ATdtVJcxCaAdLAmgIR0CmoXldkauPdX2UKGgGR7/LxjJ+2E00aAdLA2gIR0CmoSox59mZdX2UKGgGR7/Lh9b5dnkDaAdLA2gIR0CmokApazNVdX2UKGgGR7/YLhrFfiPyaAdLBGgIR0CmoePWpZOjdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CmoZGFJxvOdX2UKGgGR7/RN+9alk6LaAdLA2gIR0CmoUK6e5FxdX2UKGgGR7/PufmLcbiqaAdLA2gIR0CmolUyP+4tdX2UKGgGR7/LCrLhaTwEaAdLA2gIR0CmofkL6UJOdX2UKGgGR7+wNSZSeiBYaAdLAmgIR0CmoaBIWgvldX2UKGgGR7/RI2wV0tAcaAdLA2gIR0CmoV00m+j/dX2UKGgGR7/RB1cMVk+YaAdLA2gIR0Cmom/GdZq3dX2UKGgGR7/T9t/FzdULaAdLA2gIR0CmobrNfPX1dX2UKGgGR7/CHhS9/SYxaAdLAmgIR0CmocjLB9CvdX2UKGgGR7/UIjW07bL2aAdLA2gIR0CmooWwu/UOdX2UKGgGR7+Q2MsH0K7aaAdLAWgIR0CmodCg00m/dX2UKGgGR7/ZQhwEQoTgaAdLBGgIR0CmoXtRFZxJdX2UKGgGR7+4JWvKU3XJaAdLAmgIR0CmopnsC1Z1dX2UKGgGR7/kA/keZG8VaAdLCGgIR0Cmoj3lCCz1dX2UKGgGR7/NK02LpA2RaAdLA2gIR0CmoZcnE2pAdX2UKGgGR7+/o6jnFHawaAdLAmgIR0Cmok2u5jH5dX2UKGgGR7/VpB5X2dupaAdLBGgIR0CmofTYdyT7dX2UKGgGR7+peVs1sLv1aAdLAWgIR0CmoZ8QyylfdX2UKGgGR7/UzEaVD8cdaAdLA2gIR0CmorHf/FR6dX2UKGgGR7/EOmzjWCmNaAdLAmgIR0CmogbgKnejdX2UKGgGR7/Am0E5hjOLaAdLAmgIR0CmobEjPfKqdX2UKGgGR7+oXQ+lj3EiaAdLAWgIR0Cmog6I3zczdX2UKGgGR7/VlcyFfzBiaAdLA2gIR0CmostCzC1rdX2UKGgGR7/eKu0TlDF7aAdLBGgIR0Cmom7/ffoBdX2UKGgGR7++teUpuuRtaAdLAmgIR0CmohxHww0wdX2UKGgGR7/Qpt78ejmCaAdLA2gIR0CmocZJ04ipdX2UKGgGR7/USpBHCoCNaAdLA2gIR0CmouJT/ACXdX2UKGgGR7/R2EkB0ZFYaAdLA2gIR0CmooaScLBsdX2UKGgGR7+6fe1rqMWHaAdLAmgIR0Cmoi4VqN6xdX2UKGgGR7+dPgvUSZjQaAdLAWgIR0Cmoo8IqsltdX2UKGgGR7+baZhKDkELaAdLAWgIR0CmojYwh4dIdX2UKGgGR7+1WxQizLOiaAdLAmgIR0CmovNz8xbjdX2UKGgGR7+lQQ+UyHmBaAdLAWgIR0CmopevpyIYdX2UKGgGR7/Vu2JBPbfxaAdLBGgIR0CmoegLRa5gdX2UKGgGR7+3AHmig00naAdLAmgIR0CmokT4cm0FdX2UKGgGR7+nGXHBDXvqaAdLAWgIR0CmoktihFmWdX2UKGgGR7/FAgxJul41aAdLAmgIR0CmofVbzK9xdX2UKGgGR7/Mois4ku6FaAdLA2gIR0CmowsU7CBPdX2UKGgGR7/Sum78Nx2jaAdLA2gIR0Cmoq6eXiR5dX2UKGgGR7+7/HYHxBmgaAdLAmgIR0Cmoxknb7CSdX2UKGgGR7/ShPCVKPGRaAdLA2gIR0CmomQW3z+WdX2UKGgGR7/SPXkHUtqYaAdLA2gIR0Cmog4oZydXdX2UKGgGR7/LrHlwLmZFaAdLA2gIR0CmosQLVnVYdX2UKGgGR7/RzabnX/YKaAdLA2gIR0CmozB2fTTfdX2UKGgGR7/K7QLNOdoWaAdLA2gIR0CmonsdcSoPdX2UKGgGR7/WD5TIeYD1aAdLA2gIR0CmoiUfozN2dX2UKGgGR7/PQokRjBl+aAdLA2gIR0CmotrzoUzsdX2UKGgGR7++uW8h9srNaAdLAmgIR0Cmoz5iuuA7dX2UKGgGR7/TNcGC7K7qaAdLA2gIR0Cmojm6f8MvdX2UKGgGR7/F3Sro4dZJaAdLAmgIR0Cmo0wpF1B/dX2UKGgGR7/czj3mFJxvaAdLBGgIR0CmopbwazeGdX2UKGgGR7/bMR6F/QSjaAdLBGgIR0CmovoKlYU4dX2UKGgGR7+9Cx/ustCiaAdLAmgIR0Cmokqm0mdBdX2UKGgGR7/RUHpr1uiwaAdLA2gIR0Cmo2NWU8msdX2UKGgGR7/Qsdkrf+CLaAdLA2gIR0Cmow176YVqdX2UKGgGR7/VqAz544ZNaAdLBGgIR0CmorTE74i5dX2UKGgGR7/MZNO/L1VYaAdLA2gIR0Cmol7PIGQkdX2UKGgGR7/NjwQUYbbUaAdLA2gIR0Cmo3s3qAz6dX2UKGgGR7+/hKlHjIaMaAdLAmgIR0CmosW87IT5dX2UKGgGR7/Hb0voNd7faAdLA2gIR0CmonYF7laKdX2UKGgGR7/Yf2saKk2xaAdLBGgIR0CmoyvR7Z3+dX2UKGgGR7+mkJrtVrAQaAdLAWgIR0Cmony3kPtldX2UKGgGR7/SC+UQkHD8aAdLA2gIR0Cmo48do372dX2UKGgGR7/H1xsEaESNaAdLA2gIR0CmotmX5WRzdX2UKGgGR7/TsXBP9DQaaAdLA2gIR0CmopQl0HQhdX2UKGgGR7/IQBgeA/cGaAdLA2gIR0Cmo6bZezD5dX2UKGgGR7/WhnJ1aGHpaAdLBGgIR0Cmo0r2xptadX2UKGgGR7/GhOgxrSE2aAdLA2gIR0CmovJJXhfjdX2UKGgGR7/HXbM5fdAPaAdLAmgIR0Cmo1qSPluFdX2UKGgGR7+7iFTNt65YaAdLAmgIR0CmowG9QGfPdX2UKGgGR7/JH3lCCz1LaAdLA2gIR0CmoqxeLNwBdX2UKGgGR7/KYFaB7NSqaAdLA2gIR0Cmo77PQfITdWUu"
|
56 |
+
},
|
57 |
+
"ep_success_buffer": {
|
58 |
+
":type:": "<class 'collections.deque'>",
|
59 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
60 |
+
},
|
61 |
+
"_n_updates": 50000,
|
62 |
+
"n_steps": 5,
|
63 |
+
"gamma": 0.99,
|
64 |
+
"gae_lambda": 1.0,
|
65 |
+
"ent_coef": 0.0,
|
66 |
+
"vf_coef": 0.5,
|
67 |
+
"max_grad_norm": 0.5,
|
68 |
+
"normalize_advantage": false,
|
69 |
+
"observation_space": {
|
70 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
71 |
+
":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
72 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
|
73 |
+
"_shape": null,
|
74 |
+
"dtype": null,
|
75 |
+
"_np_random": null
|
76 |
+
},
|
77 |
+
"action_space": {
|
78 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
79 |
+
":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
|
80 |
+
"dtype": "float32",
|
81 |
+
"bounded_below": "[ True True True]",
|
82 |
+
"bounded_above": "[ True True True]",
|
83 |
+
"_shape": [
|
84 |
+
3
|
85 |
+
],
|
86 |
+
"low": "[-1. -1. -1.]",
|
87 |
+
"high": "[1. 1. 1.]",
|
88 |
+
"low_repr": "-1.0",
|
89 |
+
"high_repr": "1.0",
|
90 |
+
"_np_random": null
|
91 |
+
},
|
92 |
+
"n_envs": 4,
|
93 |
+
"lr_schedule": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
96 |
+
}
|
97 |
+
}
|
a2c-PandaReachDense-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f967fd89916c5064909c9ef7998b0180636fa319ccd98ca0428d727259baf70
|
3 |
+
size 45167
|
a2c-PandaReachDense-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:541dad402f82407e260ea40b283bb4f235a13846a8fb69cfdbe2eb40e9b95a85
|
3 |
+
size 46447
|
a2c-PandaReachDense-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
a2c-PandaReachDense-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c581362f250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c581361fd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699827657291499193, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANQmPPrhl5TslCeU+1vbpvaJm3747j0++W8CGPzOg9D0aim0+V0bIPGco3z5tThE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQdn4voEcST/QesY/8amavLocjr98uUa/PRecPz7js70Sr8G+gKjtPlzVwD+uHUY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1CY8+uGXlOyUJ5T4K9Pg+tvREu8XjxD7W9um9ombfvjuPT76hGui/MBPXv6otsL9bwIY/M6D0PRqKbT48dZ8/b2OuPbfWor9XRsg8ZyjfPm1OET8u1bE+krDVP5tgiz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27936712 0.00700065 0.4473354 ]\n [-0.11424033 -0.4363299 -0.20269482]\n [ 1.0527452 0.11944618 0.23197213]\n [ 0.0244476 0.43585512 0.56760293]]", "desired_goal": "[[-0.48603252 0.7855912 1.5506229 ]\n [-0.01887986 -1.1102517 -0.77626777]\n [ 1.2194592 -0.08783577 -0.3782888 ]\n [ 0.46417618 1.5065112 0.1934726 ]]", "observation": "[[ 0.27936712 0.00700065 0.4473354 0.48623687 -0.00300531 0.38455024]\n [-0.11424033 -0.4363299 -0.20269482 -1.8133126 -1.680273 -1.3763936 ]\n [ 1.0527452 0.11944618 0.23197213 1.2457652 0.08515059 -1.2721776 ]\n [ 0.0244476 0.43585512 0.56760293 0.34732956 1.669451 1.0888857 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+gLPtbNYL0erl0+G08IvpGvKT1U7RQ+fg5dvWo5hj2X8og+vcG6PauOvz2VemQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13663034 -0.0548838 0.21648452]\n [-0.13311426 0.0414272 0.14543658]\n [-0.0539689 0.0655392 0.2674758 ]\n [ 0.09118984 0.09353384 0.22312386]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8EV+I/JNj+MAWyUSwKMAXSUR0CmoUDqfOD8dX2UKGgGR7/YkyULUkOaaAdLBGgIR0CmoPEJ8fFKdX2UKGgGR7+89r433pOfaAdLAmgIR0CmoJs/yGzsdX2UKGgGR7/MuaF23azvaAdLA2gIR0Cmoa4nfEXMdX2UKGgGR7/Aa72+PBBSaAdLAmgIR0CmoVIH1OCYdX2UKGgGR7+3PJJXhfjTaAdLAmgIR0CmobwxN7BwdX2UKGgGR7+zm7rcCYCyaAdLAmgIR0CmoV/9pAUtdX2UKGgGR7/Q5LAYYR/WaAdLA2gIR0CmoLGZeAuqdX2UKGgGR7/YSuQp4KQaaAdLBGgIR0CmoRMERraedX2UKGgGR7/RdDpkf9xZaAdLA2gIR0CmodaT4cm0dX2UKGgGR7/SAM2FWXC1aAdLA2gIR0CmoSg9eQdTdX2UKGgGR7/aaWX1J17qaAdLBGgIR0CmoNPpY9xIdX2UKGgGR7/KVEd/8VHnaAdLA2gIR0CmofBlUZNxdX2UKGgGR7/Q3W4EwFkhaAdLA2gIR0CmoUOBczIndX2UKGgGR7/OFXaJyhi9aAdLA2gIR0CmoO3hwVCYdX2UKGgGR7/iIX9BKL88aAdLCGgIR0CmoaQj+rEMdX2UKGgGR7/QUrTYukDZaAdLA2gIR0CmogdfCyhSdX2UKGgGR7+i06YE4ecQaAdLAWgIR0CmoasOf/WEdX2UKGgGR7/DduYQarFPaAdLAmgIR0CmoPxEnb7CdX2UKGgGR7/SUUO/cnE3aAdLA2gIR0Cmoh/JNj9XdX2UKGgGR7/V38GcFyJbaAdLA2gIR0CmocO+yquKdX2UKGgGR7/UzCUHIIWyaAdLBWgIR0CmoWrcj7hvdX2UKGgGR7/QfKp1ie/YaAdLA2gIR0CmoRUSIxgzdX2UKGgGR7+ke2d/axoqaAdLAWgIR0CmoifbKzRhdX2UKGgGR7/ATdtVJcxCaAdLAmgIR0CmoXldkauPdX2UKGgGR7/LxjJ+2E00aAdLA2gIR0CmoSox59mZdX2UKGgGR7/Lh9b5dnkDaAdLA2gIR0CmokApazNVdX2UKGgGR7/YLhrFfiPyaAdLBGgIR0CmoePWpZOjdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CmoZGFJxvOdX2UKGgGR7/RN+9alk6LaAdLA2gIR0CmoUK6e5FxdX2UKGgGR7/PufmLcbiqaAdLA2gIR0CmolUyP+4tdX2UKGgGR7/LCrLhaTwEaAdLA2gIR0CmofkL6UJOdX2UKGgGR7+wNSZSeiBYaAdLAmgIR0CmoaBIWgvldX2UKGgGR7/RI2wV0tAcaAdLA2gIR0CmoV00m+j/dX2UKGgGR7/RB1cMVk+YaAdLA2gIR0Cmom/GdZq3dX2UKGgGR7/T9t/FzdULaAdLA2gIR0CmobrNfPX1dX2UKGgGR7/CHhS9/SYxaAdLAmgIR0CmocjLB9CvdX2UKGgGR7/UIjW07bL2aAdLA2gIR0CmooWwu/UOdX2UKGgGR7+Q2MsH0K7aaAdLAWgIR0CmodCg00m/dX2UKGgGR7/ZQhwEQoTgaAdLBGgIR0CmoXtRFZxJdX2UKGgGR7+4JWvKU3XJaAdLAmgIR0CmopnsC1Z1dX2UKGgGR7/kA/keZG8VaAdLCGgIR0Cmoj3lCCz1dX2UKGgGR7/NK02LpA2RaAdLA2gIR0CmoZcnE2pAdX2UKGgGR7+/o6jnFHawaAdLAmgIR0Cmok2u5jH5dX2UKGgGR7/VpB5X2dupaAdLBGgIR0CmofTYdyT7dX2UKGgGR7+peVs1sLv1aAdLAWgIR0CmoZ8QyylfdX2UKGgGR7/UzEaVD8cdaAdLA2gIR0CmorHf/FR6dX2UKGgGR7/EOmzjWCmNaAdLAmgIR0CmogbgKnejdX2UKGgGR7/Am0E5hjOLaAdLAmgIR0CmobEjPfKqdX2UKGgGR7+oXQ+lj3EiaAdLAWgIR0Cmog6I3zczdX2UKGgGR7/VlcyFfzBiaAdLA2gIR0CmostCzC1rdX2UKGgGR7/eKu0TlDF7aAdLBGgIR0Cmom7/ffoBdX2UKGgGR7++teUpuuRtaAdLAmgIR0CmohxHww0wdX2UKGgGR7/Qpt78ejmCaAdLA2gIR0CmocZJ04ipdX2UKGgGR7/USpBHCoCNaAdLA2gIR0CmouJT/ACXdX2UKGgGR7/R2EkB0ZFYaAdLA2gIR0CmooaScLBsdX2UKGgGR7+6fe1rqMWHaAdLAmgIR0Cmoi4VqN6xdX2UKGgGR7+dPgvUSZjQaAdLAWgIR0Cmoo8IqsltdX2UKGgGR7+baZhKDkELaAdLAWgIR0CmojYwh4dIdX2UKGgGR7+1WxQizLOiaAdLAmgIR0CmovNz8xbjdX2UKGgGR7+lQQ+UyHmBaAdLAWgIR0CmopevpyIYdX2UKGgGR7/Vu2JBPbfxaAdLBGgIR0CmoegLRa5gdX2UKGgGR7+3AHmig00naAdLAmgIR0CmokT4cm0FdX2UKGgGR7+nGXHBDXvqaAdLAWgIR0CmoktihFmWdX2UKGgGR7/FAgxJul41aAdLAmgIR0CmofVbzK9xdX2UKGgGR7/Mois4ku6FaAdLA2gIR0CmowsU7CBPdX2UKGgGR7/Sum78Nx2jaAdLA2gIR0Cmoq6eXiR5dX2UKGgGR7+7/HYHxBmgaAdLAmgIR0Cmoxknb7CSdX2UKGgGR7/ShPCVKPGRaAdLA2gIR0CmomQW3z+WdX2UKGgGR7/SPXkHUtqYaAdLA2gIR0Cmog4oZydXdX2UKGgGR7/LrHlwLmZFaAdLA2gIR0CmosQLVnVYdX2UKGgGR7/RzabnX/YKaAdLA2gIR0CmozB2fTTfdX2UKGgGR7/K7QLNOdoWaAdLA2gIR0CmonsdcSoPdX2UKGgGR7/WD5TIeYD1aAdLA2gIR0CmoiUfozN2dX2UKGgGR7/PQokRjBl+aAdLA2gIR0CmotrzoUzsdX2UKGgGR7++uW8h9srNaAdLAmgIR0Cmoz5iuuA7dX2UKGgGR7/TNcGC7K7qaAdLA2gIR0Cmojm6f8MvdX2UKGgGR7/F3Sro4dZJaAdLAmgIR0Cmo0wpF1B/dX2UKGgGR7/czj3mFJxvaAdLBGgIR0CmopbwazeGdX2UKGgGR7/bMR6F/QSjaAdLBGgIR0CmovoKlYU4dX2UKGgGR7+9Cx/ustCiaAdLAmgIR0Cmokqm0mdBdX2UKGgGR7/RUHpr1uiwaAdLA2gIR0Cmo2NWU8msdX2UKGgGR7/Qsdkrf+CLaAdLA2gIR0Cmow176YVqdX2UKGgGR7/VqAz544ZNaAdLBGgIR0CmorTE74i5dX2UKGgGR7/MZNO/L1VYaAdLA2gIR0Cmol7PIGQkdX2UKGgGR7/NjwQUYbbUaAdLA2gIR0Cmo3s3qAz6dX2UKGgGR7+/hKlHjIaMaAdLAmgIR0CmosW87IT5dX2UKGgGR7/Hb0voNd7faAdLA2gIR0CmonYF7laKdX2UKGgGR7/Yf2saKk2xaAdLBGgIR0CmoyvR7Z3+dX2UKGgGR7+mkJrtVrAQaAdLAWgIR0Cmony3kPtldX2UKGgGR7/SC+UQkHD8aAdLA2gIR0Cmo48do372dX2UKGgGR7/H1xsEaESNaAdLA2gIR0CmotmX5WRzdX2UKGgGR7/TsXBP9DQaaAdLA2gIR0CmopQl0HQhdX2UKGgGR7/IQBgeA/cGaAdLA2gIR0Cmo6bZezD5dX2UKGgGR7/WhnJ1aGHpaAdLBGgIR0Cmo0r2xptadX2UKGgGR7/GhOgxrSE2aAdLA2gIR0CmovJJXhfjdX2UKGgGR7/HXbM5fdAPaAdLAmgIR0Cmo1qSPluFdX2UKGgGR7+7iFTNt65YaAdLAmgIR0CmowG9QGfPdX2UKGgGR7/JH3lCCz1LaAdLA2gIR0CmoqxeLNwBdX2UKGgGR7/KYFaB7NSqaAdLA2gIR0Cmo77PQfITdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
ADDED
Binary file (659 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -0.17927517890930175, "std_reward": 0.09859792968413611, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-12T23:09:14.284348"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c90660797bb962987af2841d9e7e0e46d4849565d4ef22717ed6975f6d470ef6
|
3 |
+
size 2623
|