archii0 commited on
Commit
f6337d8
·
1 Parent(s): 43de9f8

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - PandaReachDense-v3
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: PandaReachDense-v3
16
+ type: PandaReachDense-v3
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -0.18 +/- 0.10
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **PandaReachDense-v3**
25
+ This is a trained model of a **A2C** agent playing **PandaReachDense-v3**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-PandaReachDense-v3.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cace66987c46d7da159ee99af1510f135446ca2a9feeee8bb69dcf2e4fa651d
3
+ size 108131
a2c-PandaReachDense-v3/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.1.0
a2c-PandaReachDense-v3/data ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c581362f250>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x7c581361fd80>"
10
+ },
11
+ "verbose": 1,
12
+ "policy_kwargs": {
13
+ ":type:": "<class 'dict'>",
14
+ ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
15
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
16
+ "optimizer_kwargs": {
17
+ "alpha": 0.99,
18
+ "eps": 1e-05,
19
+ "weight_decay": 0
20
+ }
21
+ },
22
+ "num_timesteps": 1000000,
23
+ "_total_timesteps": 1000000,
24
+ "_num_timesteps_at_start": 0,
25
+ "seed": null,
26
+ "action_noise": null,
27
+ "start_time": 1699827657291499193,
28
+ "learning_rate": 0.0007,
29
+ "tensorboard_log": null,
30
+ "_last_obs": {
31
+ ":type:": "<class 'collections.OrderedDict'>",
32
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANQmPPrhl5TslCeU+1vbpvaJm3747j0++W8CGPzOg9D0aim0+V0bIPGco3z5tThE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQdn4voEcST/QesY/8amavLocjr98uUa/PRecPz7js70Sr8G+gKjtPlzVwD+uHUY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1CY8+uGXlOyUJ5T4K9Pg+tvREu8XjxD7W9um9ombfvjuPT76hGui/MBPXv6otsL9bwIY/M6D0PRqKbT48dZ8/b2OuPbfWor9XRsg8ZyjfPm1OET8u1bE+krDVP5tgiz+UaA5LBEsGhpRoEnSUUpR1Lg==",
33
+ "achieved_goal": "[[ 0.27936712 0.00700065 0.4473354 ]\n [-0.11424033 -0.4363299 -0.20269482]\n [ 1.0527452 0.11944618 0.23197213]\n [ 0.0244476 0.43585512 0.56760293]]",
34
+ "desired_goal": "[[-0.48603252 0.7855912 1.5506229 ]\n [-0.01887986 -1.1102517 -0.77626777]\n [ 1.2194592 -0.08783577 -0.3782888 ]\n [ 0.46417618 1.5065112 0.1934726 ]]",
35
+ "observation": "[[ 0.27936712 0.00700065 0.4473354 0.48623687 -0.00300531 0.38455024]\n [-0.11424033 -0.4363299 -0.20269482 -1.8133126 -1.680273 -1.3763936 ]\n [ 1.0527452 0.11944618 0.23197213 1.2457652 0.08515059 -1.2721776 ]\n [ 0.0244476 0.43585512 0.56760293 0.34732956 1.669451 1.0888857 ]]"
36
+ },
37
+ "_last_episode_starts": {
38
+ ":type:": "<class 'numpy.ndarray'>",
39
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
40
+ },
41
+ "_last_original_obs": {
42
+ ":type:": "<class 'collections.OrderedDict'>",
43
+ ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+gLPtbNYL0erl0+G08IvpGvKT1U7RQ+fg5dvWo5hj2X8og+vcG6PauOvz2VemQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
44
+ "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
45
+ "desired_goal": "[[ 0.13663034 -0.0548838 0.21648452]\n [-0.13311426 0.0414272 0.14543658]\n [-0.0539689 0.0655392 0.2674758 ]\n [ 0.09118984 0.09353384 0.22312386]]",
46
+ "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
47
+ },
48
+ "_episode_num": 0,
49
+ "use_sde": false,
50
+ "sde_sample_freq": -1,
51
+ "_current_progress_remaining": 0.0,
52
+ "_stats_window_size": 100,
53
+ "ep_info_buffer": {
54
+ ":type:": "<class 'collections.deque'>",
55
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8EV+I/JNj+MAWyUSwKMAXSUR0CmoUDqfOD8dX2UKGgGR7/YkyULUkOaaAdLBGgIR0CmoPEJ8fFKdX2UKGgGR7+89r433pOfaAdLAmgIR0CmoJs/yGzsdX2UKGgGR7/MuaF23azvaAdLA2gIR0Cmoa4nfEXMdX2UKGgGR7/Aa72+PBBSaAdLAmgIR0CmoVIH1OCYdX2UKGgGR7+3PJJXhfjTaAdLAmgIR0CmobwxN7BwdX2UKGgGR7+zm7rcCYCyaAdLAmgIR0CmoV/9pAUtdX2UKGgGR7/Q5LAYYR/WaAdLA2gIR0CmoLGZeAuqdX2UKGgGR7/YSuQp4KQaaAdLBGgIR0CmoRMERraedX2UKGgGR7/RdDpkf9xZaAdLA2gIR0CmodaT4cm0dX2UKGgGR7/SAM2FWXC1aAdLA2gIR0CmoSg9eQdTdX2UKGgGR7/aaWX1J17qaAdLBGgIR0CmoNPpY9xIdX2UKGgGR7/KVEd/8VHnaAdLA2gIR0CmofBlUZNxdX2UKGgGR7/Q3W4EwFkhaAdLA2gIR0CmoUOBczIndX2UKGgGR7/OFXaJyhi9aAdLA2gIR0CmoO3hwVCYdX2UKGgGR7/iIX9BKL88aAdLCGgIR0CmoaQj+rEMdX2UKGgGR7/QUrTYukDZaAdLA2gIR0CmogdfCyhSdX2UKGgGR7+i06YE4ecQaAdLAWgIR0CmoasOf/WEdX2UKGgGR7/DduYQarFPaAdLAmgIR0CmoPxEnb7CdX2UKGgGR7/SUUO/cnE3aAdLA2gIR0Cmoh/JNj9XdX2UKGgGR7/V38GcFyJbaAdLA2gIR0CmocO+yquKdX2UKGgGR7/UzCUHIIWyaAdLBWgIR0CmoWrcj7hvdX2UKGgGR7/QfKp1ie/YaAdLA2gIR0CmoRUSIxgzdX2UKGgGR7+ke2d/axoqaAdLAWgIR0CmoifbKzRhdX2UKGgGR7/ATdtVJcxCaAdLAmgIR0CmoXldkauPdX2UKGgGR7/LxjJ+2E00aAdLA2gIR0CmoSox59mZdX2UKGgGR7/Lh9b5dnkDaAdLA2gIR0CmokApazNVdX2UKGgGR7/YLhrFfiPyaAdLBGgIR0CmoePWpZOjdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CmoZGFJxvOdX2UKGgGR7/RN+9alk6LaAdLA2gIR0CmoUK6e5FxdX2UKGgGR7/PufmLcbiqaAdLA2gIR0CmolUyP+4tdX2UKGgGR7/LCrLhaTwEaAdLA2gIR0CmofkL6UJOdX2UKGgGR7+wNSZSeiBYaAdLAmgIR0CmoaBIWgvldX2UKGgGR7/RI2wV0tAcaAdLA2gIR0CmoV00m+j/dX2UKGgGR7/RB1cMVk+YaAdLA2gIR0Cmom/GdZq3dX2UKGgGR7/T9t/FzdULaAdLA2gIR0CmobrNfPX1dX2UKGgGR7/CHhS9/SYxaAdLAmgIR0CmocjLB9CvdX2UKGgGR7/UIjW07bL2aAdLA2gIR0CmooWwu/UOdX2UKGgGR7+Q2MsH0K7aaAdLAWgIR0CmodCg00m/dX2UKGgGR7/ZQhwEQoTgaAdLBGgIR0CmoXtRFZxJdX2UKGgGR7+4JWvKU3XJaAdLAmgIR0CmopnsC1Z1dX2UKGgGR7/kA/keZG8VaAdLCGgIR0Cmoj3lCCz1dX2UKGgGR7/NK02LpA2RaAdLA2gIR0CmoZcnE2pAdX2UKGgGR7+/o6jnFHawaAdLAmgIR0Cmok2u5jH5dX2UKGgGR7/VpB5X2dupaAdLBGgIR0CmofTYdyT7dX2UKGgGR7+peVs1sLv1aAdLAWgIR0CmoZ8QyylfdX2UKGgGR7/UzEaVD8cdaAdLA2gIR0CmorHf/FR6dX2UKGgGR7/EOmzjWCmNaAdLAmgIR0CmogbgKnejdX2UKGgGR7/Am0E5hjOLaAdLAmgIR0CmobEjPfKqdX2UKGgGR7+oXQ+lj3EiaAdLAWgIR0Cmog6I3zczdX2UKGgGR7/VlcyFfzBiaAdLA2gIR0CmostCzC1rdX2UKGgGR7/eKu0TlDF7aAdLBGgIR0Cmom7/ffoBdX2UKGgGR7++teUpuuRtaAdLAmgIR0CmohxHww0wdX2UKGgGR7/Qpt78ejmCaAdLA2gIR0CmocZJ04ipdX2UKGgGR7/USpBHCoCNaAdLA2gIR0CmouJT/ACXdX2UKGgGR7/R2EkB0ZFYaAdLA2gIR0CmooaScLBsdX2UKGgGR7+6fe1rqMWHaAdLAmgIR0Cmoi4VqN6xdX2UKGgGR7+dPgvUSZjQaAdLAWgIR0Cmoo8IqsltdX2UKGgGR7+baZhKDkELaAdLAWgIR0CmojYwh4dIdX2UKGgGR7+1WxQizLOiaAdLAmgIR0CmovNz8xbjdX2UKGgGR7+lQQ+UyHmBaAdLAWgIR0CmopevpyIYdX2UKGgGR7/Vu2JBPbfxaAdLBGgIR0CmoegLRa5gdX2UKGgGR7+3AHmig00naAdLAmgIR0CmokT4cm0FdX2UKGgGR7+nGXHBDXvqaAdLAWgIR0CmoktihFmWdX2UKGgGR7/FAgxJul41aAdLAmgIR0CmofVbzK9xdX2UKGgGR7/Mois4ku6FaAdLA2gIR0CmowsU7CBPdX2UKGgGR7/Sum78Nx2jaAdLA2gIR0Cmoq6eXiR5dX2UKGgGR7+7/HYHxBmgaAdLAmgIR0Cmoxknb7CSdX2UKGgGR7/ShPCVKPGRaAdLA2gIR0CmomQW3z+WdX2UKGgGR7/SPXkHUtqYaAdLA2gIR0Cmog4oZydXdX2UKGgGR7/LrHlwLmZFaAdLA2gIR0CmosQLVnVYdX2UKGgGR7/RzabnX/YKaAdLA2gIR0CmozB2fTTfdX2UKGgGR7/K7QLNOdoWaAdLA2gIR0CmonsdcSoPdX2UKGgGR7/WD5TIeYD1aAdLA2gIR0CmoiUfozN2dX2UKGgGR7/PQokRjBl+aAdLA2gIR0CmotrzoUzsdX2UKGgGR7++uW8h9srNaAdLAmgIR0Cmoz5iuuA7dX2UKGgGR7/TNcGC7K7qaAdLA2gIR0Cmojm6f8MvdX2UKGgGR7/F3Sro4dZJaAdLAmgIR0Cmo0wpF1B/dX2UKGgGR7/czj3mFJxvaAdLBGgIR0CmopbwazeGdX2UKGgGR7/bMR6F/QSjaAdLBGgIR0CmovoKlYU4dX2UKGgGR7+9Cx/ustCiaAdLAmgIR0Cmokqm0mdBdX2UKGgGR7/RUHpr1uiwaAdLA2gIR0Cmo2NWU8msdX2UKGgGR7/Qsdkrf+CLaAdLA2gIR0Cmow176YVqdX2UKGgGR7/VqAz544ZNaAdLBGgIR0CmorTE74i5dX2UKGgGR7/MZNO/L1VYaAdLA2gIR0Cmol7PIGQkdX2UKGgGR7/NjwQUYbbUaAdLA2gIR0Cmo3s3qAz6dX2UKGgGR7+/hKlHjIaMaAdLAmgIR0CmosW87IT5dX2UKGgGR7/Hb0voNd7faAdLA2gIR0CmonYF7laKdX2UKGgGR7/Yf2saKk2xaAdLBGgIR0CmoyvR7Z3+dX2UKGgGR7+mkJrtVrAQaAdLAWgIR0Cmony3kPtldX2UKGgGR7/SC+UQkHD8aAdLA2gIR0Cmo48do372dX2UKGgGR7/H1xsEaESNaAdLA2gIR0CmotmX5WRzdX2UKGgGR7/TsXBP9DQaaAdLA2gIR0CmopQl0HQhdX2UKGgGR7/IQBgeA/cGaAdLA2gIR0Cmo6bZezD5dX2UKGgGR7/WhnJ1aGHpaAdLBGgIR0Cmo0r2xptadX2UKGgGR7/GhOgxrSE2aAdLA2gIR0CmovJJXhfjdX2UKGgGR7/HXbM5fdAPaAdLAmgIR0Cmo1qSPluFdX2UKGgGR7+7iFTNt65YaAdLAmgIR0CmowG9QGfPdX2UKGgGR7/JH3lCCz1LaAdLA2gIR0CmoqxeLNwBdX2UKGgGR7/KYFaB7NSqaAdLA2gIR0Cmo77PQfITdWUu"
56
+ },
57
+ "ep_success_buffer": {
58
+ ":type:": "<class 'collections.deque'>",
59
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
60
+ },
61
+ "_n_updates": 50000,
62
+ "n_steps": 5,
63
+ "gamma": 0.99,
64
+ "gae_lambda": 1.0,
65
+ "ent_coef": 0.0,
66
+ "vf_coef": 0.5,
67
+ "max_grad_norm": 0.5,
68
+ "normalize_advantage": false,
69
+ "observation_space": {
70
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
71
+ ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
72
+ "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])",
73
+ "_shape": null,
74
+ "dtype": null,
75
+ "_np_random": null
76
+ },
77
+ "action_space": {
78
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
79
+ ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==",
80
+ "dtype": "float32",
81
+ "bounded_below": "[ True True True]",
82
+ "bounded_above": "[ True True True]",
83
+ "_shape": [
84
+ 3
85
+ ],
86
+ "low": "[-1. -1. -1.]",
87
+ "high": "[1. 1. 1.]",
88
+ "low_repr": "-1.0",
89
+ "high_repr": "1.0",
90
+ "_np_random": null
91
+ },
92
+ "n_envs": 4,
93
+ "lr_schedule": {
94
+ ":type:": "<class 'function'>",
95
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
96
+ }
97
+ }
a2c-PandaReachDense-v3/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5f967fd89916c5064909c9ef7998b0180636fa319ccd98ca0428d727259baf70
3
+ size 45167
a2c-PandaReachDense-v3/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:541dad402f82407e260ea40b283bb4f235a13846a8fb69cfdbe2eb40e9b95a85
3
+ size 46447
a2c-PandaReachDense-v3/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
a2c-PandaReachDense-v3/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.1.0
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.25.2
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c581362f250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c581361fd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1699827657291499193, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAANQmPPrhl5TslCeU+1vbpvaJm3747j0++W8CGPzOg9D0aim0+V0bIPGco3z5tThE/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAQdn4voEcST/QesY/8amavLocjr98uUa/PRecPz7js70Sr8G+gKjtPlzVwD+uHUY+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAA1CY8+uGXlOyUJ5T4K9Pg+tvREu8XjxD7W9um9ombfvjuPT76hGui/MBPXv6otsL9bwIY/M6D0PRqKbT48dZ8/b2OuPbfWor9XRsg8ZyjfPm1OET8u1bE+krDVP5tgiz+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.27936712 0.00700065 0.4473354 ]\n [-0.11424033 -0.4363299 -0.20269482]\n [ 1.0527452 0.11944618 0.23197213]\n [ 0.0244476 0.43585512 0.56760293]]", "desired_goal": "[[-0.48603252 0.7855912 1.5506229 ]\n [-0.01887986 -1.1102517 -0.77626777]\n [ 1.2194592 -0.08783577 -0.3782888 ]\n [ 0.46417618 1.5065112 0.1934726 ]]", "observation": "[[ 0.27936712 0.00700065 0.4473354 0.48623687 -0.00300531 0.38455024]\n [-0.11424033 -0.4363299 -0.20269482 -1.8133126 -1.680273 -1.3763936 ]\n [ 1.0527452 0.11944618 0.23197213 1.2457652 0.08515059 -1.2721776 ]\n [ 0.0244476 0.43585512 0.56760293 0.34732956 1.669451 1.0888857 ]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0+gLPtbNYL0erl0+G08IvpGvKT1U7RQ+fg5dvWo5hj2X8og+vcG6PauOvz2VemQ+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.13663034 -0.0548838 0.21648452]\n [-0.13311426 0.0414272 0.14543658]\n [-0.0539689 0.0655392 0.2674758 ]\n [ 0.09118984 0.09353384 0.22312386]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8EV+I/JNj+MAWyUSwKMAXSUR0CmoUDqfOD8dX2UKGgGR7/YkyULUkOaaAdLBGgIR0CmoPEJ8fFKdX2UKGgGR7+89r433pOfaAdLAmgIR0CmoJs/yGzsdX2UKGgGR7/MuaF23azvaAdLA2gIR0Cmoa4nfEXMdX2UKGgGR7/Aa72+PBBSaAdLAmgIR0CmoVIH1OCYdX2UKGgGR7+3PJJXhfjTaAdLAmgIR0CmobwxN7BwdX2UKGgGR7+zm7rcCYCyaAdLAmgIR0CmoV/9pAUtdX2UKGgGR7/Q5LAYYR/WaAdLA2gIR0CmoLGZeAuqdX2UKGgGR7/YSuQp4KQaaAdLBGgIR0CmoRMERraedX2UKGgGR7/RdDpkf9xZaAdLA2gIR0CmodaT4cm0dX2UKGgGR7/SAM2FWXC1aAdLA2gIR0CmoSg9eQdTdX2UKGgGR7/aaWX1J17qaAdLBGgIR0CmoNPpY9xIdX2UKGgGR7/KVEd/8VHnaAdLA2gIR0CmofBlUZNxdX2UKGgGR7/Q3W4EwFkhaAdLA2gIR0CmoUOBczIndX2UKGgGR7/OFXaJyhi9aAdLA2gIR0CmoO3hwVCYdX2UKGgGR7/iIX9BKL88aAdLCGgIR0CmoaQj+rEMdX2UKGgGR7/QUrTYukDZaAdLA2gIR0CmogdfCyhSdX2UKGgGR7+i06YE4ecQaAdLAWgIR0CmoasOf/WEdX2UKGgGR7/DduYQarFPaAdLAmgIR0CmoPxEnb7CdX2UKGgGR7/SUUO/cnE3aAdLA2gIR0Cmoh/JNj9XdX2UKGgGR7/V38GcFyJbaAdLA2gIR0CmocO+yquKdX2UKGgGR7/UzCUHIIWyaAdLBWgIR0CmoWrcj7hvdX2UKGgGR7/QfKp1ie/YaAdLA2gIR0CmoRUSIxgzdX2UKGgGR7+ke2d/axoqaAdLAWgIR0CmoifbKzRhdX2UKGgGR7/ATdtVJcxCaAdLAmgIR0CmoXldkauPdX2UKGgGR7/LxjJ+2E00aAdLA2gIR0CmoSox59mZdX2UKGgGR7/Lh9b5dnkDaAdLA2gIR0CmokApazNVdX2UKGgGR7/YLhrFfiPyaAdLBGgIR0CmoePWpZOjdX2UKGgGR7/LBgNPP9k0aAdLA2gIR0CmoZGFJxvOdX2UKGgGR7/RN+9alk6LaAdLA2gIR0CmoUK6e5FxdX2UKGgGR7/PufmLcbiqaAdLA2gIR0CmolUyP+4tdX2UKGgGR7/LCrLhaTwEaAdLA2gIR0CmofkL6UJOdX2UKGgGR7+wNSZSeiBYaAdLAmgIR0CmoaBIWgvldX2UKGgGR7/RI2wV0tAcaAdLA2gIR0CmoV00m+j/dX2UKGgGR7/RB1cMVk+YaAdLA2gIR0Cmom/GdZq3dX2UKGgGR7/T9t/FzdULaAdLA2gIR0CmobrNfPX1dX2UKGgGR7/CHhS9/SYxaAdLAmgIR0CmocjLB9CvdX2UKGgGR7/UIjW07bL2aAdLA2gIR0CmooWwu/UOdX2UKGgGR7+Q2MsH0K7aaAdLAWgIR0CmodCg00m/dX2UKGgGR7/ZQhwEQoTgaAdLBGgIR0CmoXtRFZxJdX2UKGgGR7+4JWvKU3XJaAdLAmgIR0CmopnsC1Z1dX2UKGgGR7/kA/keZG8VaAdLCGgIR0Cmoj3lCCz1dX2UKGgGR7/NK02LpA2RaAdLA2gIR0CmoZcnE2pAdX2UKGgGR7+/o6jnFHawaAdLAmgIR0Cmok2u5jH5dX2UKGgGR7/VpB5X2dupaAdLBGgIR0CmofTYdyT7dX2UKGgGR7+peVs1sLv1aAdLAWgIR0CmoZ8QyylfdX2UKGgGR7/UzEaVD8cdaAdLA2gIR0CmorHf/FR6dX2UKGgGR7/EOmzjWCmNaAdLAmgIR0CmogbgKnejdX2UKGgGR7/Am0E5hjOLaAdLAmgIR0CmobEjPfKqdX2UKGgGR7+oXQ+lj3EiaAdLAWgIR0Cmog6I3zczdX2UKGgGR7/VlcyFfzBiaAdLA2gIR0CmostCzC1rdX2UKGgGR7/eKu0TlDF7aAdLBGgIR0Cmom7/ffoBdX2UKGgGR7++teUpuuRtaAdLAmgIR0CmohxHww0wdX2UKGgGR7/Qpt78ejmCaAdLA2gIR0CmocZJ04ipdX2UKGgGR7/USpBHCoCNaAdLA2gIR0CmouJT/ACXdX2UKGgGR7/R2EkB0ZFYaAdLA2gIR0CmooaScLBsdX2UKGgGR7+6fe1rqMWHaAdLAmgIR0Cmoi4VqN6xdX2UKGgGR7+dPgvUSZjQaAdLAWgIR0Cmoo8IqsltdX2UKGgGR7+baZhKDkELaAdLAWgIR0CmojYwh4dIdX2UKGgGR7+1WxQizLOiaAdLAmgIR0CmovNz8xbjdX2UKGgGR7+lQQ+UyHmBaAdLAWgIR0CmopevpyIYdX2UKGgGR7/Vu2JBPbfxaAdLBGgIR0CmoegLRa5gdX2UKGgGR7+3AHmig00naAdLAmgIR0CmokT4cm0FdX2UKGgGR7+nGXHBDXvqaAdLAWgIR0CmoktihFmWdX2UKGgGR7/FAgxJul41aAdLAmgIR0CmofVbzK9xdX2UKGgGR7/Mois4ku6FaAdLA2gIR0CmowsU7CBPdX2UKGgGR7/Sum78Nx2jaAdLA2gIR0Cmoq6eXiR5dX2UKGgGR7+7/HYHxBmgaAdLAmgIR0Cmoxknb7CSdX2UKGgGR7/ShPCVKPGRaAdLA2gIR0CmomQW3z+WdX2UKGgGR7/SPXkHUtqYaAdLA2gIR0Cmog4oZydXdX2UKGgGR7/LrHlwLmZFaAdLA2gIR0CmosQLVnVYdX2UKGgGR7/RzabnX/YKaAdLA2gIR0CmozB2fTTfdX2UKGgGR7/K7QLNOdoWaAdLA2gIR0CmonsdcSoPdX2UKGgGR7/WD5TIeYD1aAdLA2gIR0CmoiUfozN2dX2UKGgGR7/PQokRjBl+aAdLA2gIR0CmotrzoUzsdX2UKGgGR7++uW8h9srNaAdLAmgIR0Cmoz5iuuA7dX2UKGgGR7/TNcGC7K7qaAdLA2gIR0Cmojm6f8MvdX2UKGgGR7/F3Sro4dZJaAdLAmgIR0Cmo0wpF1B/dX2UKGgGR7/czj3mFJxvaAdLBGgIR0CmopbwazeGdX2UKGgGR7/bMR6F/QSjaAdLBGgIR0CmovoKlYU4dX2UKGgGR7+9Cx/ustCiaAdLAmgIR0Cmokqm0mdBdX2UKGgGR7/RUHpr1uiwaAdLA2gIR0Cmo2NWU8msdX2UKGgGR7/Qsdkrf+CLaAdLA2gIR0Cmow176YVqdX2UKGgGR7/VqAz544ZNaAdLBGgIR0CmorTE74i5dX2UKGgGR7/MZNO/L1VYaAdLA2gIR0Cmol7PIGQkdX2UKGgGR7/NjwQUYbbUaAdLA2gIR0Cmo3s3qAz6dX2UKGgGR7+/hKlHjIaMaAdLAmgIR0CmosW87IT5dX2UKGgGR7/Hb0voNd7faAdLA2gIR0CmonYF7laKdX2UKGgGR7/Yf2saKk2xaAdLBGgIR0CmoyvR7Z3+dX2UKGgGR7+mkJrtVrAQaAdLAWgIR0Cmony3kPtldX2UKGgGR7/SC+UQkHD8aAdLA2gIR0Cmo48do372dX2UKGgGR7/H1xsEaESNaAdLA2gIR0CmotmX5WRzdX2UKGgGR7/TsXBP9DQaaAdLA2gIR0CmopQl0HQhdX2UKGgGR7/IQBgeA/cGaAdLA2gIR0Cmo6bZezD5dX2UKGgGR7/WhnJ1aGHpaAdLBGgIR0Cmo0r2xptadX2UKGgGR7/GhOgxrSE2aAdLA2gIR0CmovJJXhfjdX2UKGgGR7/HXbM5fdAPaAdLAmgIR0Cmo1qSPluFdX2UKGgGR7+7iFTNt65YaAdLAmgIR0CmowG9QGfPdX2UKGgGR7/JH3lCCz1LaAdLA2gIR0CmoqxeLNwBdX2UKGgGR7/KYFaB7NSqaAdLA2gIR0Cmo77PQfITdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
replay.mp4 ADDED
Binary file (659 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -0.17927517890930175, "std_reward": 0.09859792968413611, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-12T23:09:14.284348"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c90660797bb962987af2841d9e7e0e46d4849565d4ef22717ed6975f6d470ef6
3
+ size 2623