Update README.md
Browse files
README.md
CHANGED
@@ -7,6 +7,7 @@ tags:
|
|
7 |
- video-classification
|
8 |
- ucf-crime
|
9 |
- vandalism-dectection
|
|
|
10 |
metrics:
|
11 |
- accuracy
|
12 |
model-index:
|
@@ -30,8 +31,80 @@ More information needed
|
|
30 |
|
31 |
## Intended uses & limitations
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
## Training and evaluation data
|
36 |
|
37 |
More information needed
|
|
|
7 |
- video-classification
|
8 |
- ucf-crime
|
9 |
- vandalism-dectection
|
10 |
+
- videomae
|
11 |
metrics:
|
12 |
- accuracy
|
13 |
model-index:
|
|
|
31 |
|
32 |
## Intended uses & limitations
|
33 |
|
34 |
+
Usage:
|
35 |
+
```
|
36 |
+
import av
|
37 |
+
import torch
|
38 |
+
import numpy as np
|
39 |
+
|
40 |
+
from transformers import AutoImageProcessor, VideoMAEForVideoClassification
|
41 |
+
from huggingface_hub import hf_hub_download
|
42 |
+
|
43 |
+
np.random.seed(0)
|
44 |
+
|
45 |
+
|
46 |
+
def read_video_pyav(container, indices):
|
47 |
+
'''
|
48 |
+
Decode the video with PyAV decoder.
|
49 |
+
Args:
|
50 |
+
container (`av.container.input.InputContainer`): PyAV container.
|
51 |
+
indices (`List[int]`): List of frame indices to decode.
|
52 |
+
Returns:
|
53 |
+
result (np.ndarray): np array of decoded frames of shape (num_frames, height, width, 3).
|
54 |
+
'''
|
55 |
+
frames = []
|
56 |
+
container.seek(0)
|
57 |
+
start_index = indices[0]
|
58 |
+
end_index = indices[-1]
|
59 |
+
for i, frame in enumerate(container.decode(video=0)):
|
60 |
+
if i > end_index:
|
61 |
+
break
|
62 |
+
if i >= start_index and i in indices:
|
63 |
+
frames.append(frame)
|
64 |
+
return np.stack([x.to_ndarray(format="rgb24") for x in frames])
|
65 |
+
|
66 |
+
|
67 |
+
def sample_frame_indices(clip_len, frame_sample_rate, seg_len):
|
68 |
+
'''
|
69 |
+
Sample a given number of frame indices from the video.
|
70 |
+
Args:
|
71 |
+
clip_len (`int`): Total number of frames to sample.
|
72 |
+
frame_sample_rate (`int`): Sample every n-th frame.
|
73 |
+
seg_len (`int`): Maximum allowed index of sample's last frame.
|
74 |
+
Returns:
|
75 |
+
indices (`List[int]`): List of sampled frame indices
|
76 |
+
'''
|
77 |
+
converted_len = int(clip_len * frame_sample_rate)
|
78 |
+
end_idx = np.random.randint(converted_len, seg_len)
|
79 |
+
start_idx = end_idx - converted_len
|
80 |
+
indices = np.linspace(start_idx, end_idx, num=clip_len)
|
81 |
+
indices = np.clip(indices, start_idx, end_idx - 1).astype(np.int64)
|
82 |
+
return indices
|
83 |
+
|
84 |
+
|
85 |
+
# video clip consists of 300 frames (10 seconds at 30 FPS)
|
86 |
+
file_path = hf_hub_download(
|
87 |
+
repo_id="nielsr/video-demo", filename="eating_spaghetti.mp4", repo_type="dataset"
|
88 |
+
)
|
89 |
+
container = av.open(file_path)
|
90 |
+
|
91 |
+
# sample 16 frames
|
92 |
+
indices = sample_frame_indices(clip_len=16, frame_sample_rate=1, seg_len=container.streams.video[0].frames)
|
93 |
+
video = read_video_pyav(container, indices)
|
94 |
+
|
95 |
+
image_processor = AutoImageProcessor.from_pretrained("videomae-base-finetuned-ucfcrime-full")
|
96 |
+
model = VideoMAEForVideoClassification.from_pretrained("videomae-base-finetuned-ucfcrime-full")
|
97 |
+
|
98 |
+
inputs = image_processor(list(video), return_tensors="pt")
|
99 |
+
|
100 |
+
with torch.no_grad():
|
101 |
+
outputs = model(**inputs)
|
102 |
+
logits = outputs.logits
|
103 |
+
|
104 |
+
# model predicts one of the 400 Kinetics-400 classes
|
105 |
+
predicted_label = logits.argmax(-1).item()
|
106 |
+
print(model.config.id2label[predicted_label])
|
107 |
+
```
|
108 |
## Training and evaluation data
|
109 |
|
110 |
More information needed
|