File size: 9,576 Bytes
09ba4d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import gc

from trainer import Trainer, TrainerArgs

from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager

from dataclasses import dataclass, field
from typing import Optional
from transformers import HfArgumentParser

import argparse

def create_xtts_trainer_parser():
    parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer")

    parser.add_argument("--output_path", type=str, required=True,
                        help="Path to pretrained + checkpoint model")
    parser.add_argument("--metadatas", nargs='+', type=str, required=True,
                        help="train_csv_path,eval_csv_path,language")
    parser.add_argument("--num_epochs", type=int, default=1,
                        help="Number of epochs")
    parser.add_argument("--batch_size", type=int, default=1,
                        help="Mini batch size")
    parser.add_argument("--grad_acumm", type=int, default=1,
                        help="Grad accumulation steps")
    parser.add_argument("--max_audio_length", type=int, default=255995,
                        help="Max audio length")
    parser.add_argument("--max_text_length", type=int, default=200,
                        help="Max text length")
    parser.add_argument("--weight_decay", type=float, default=1e-2,
                        help="Weight decay")
    parser.add_argument("--lr", type=float, default=5e-6,
                        help="Learning rate")
    parser.add_argument("--save_step", type=int, default=5000,
                        help="Save step")

    return parser



def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step):
    #  Logging parameters
    RUN_NAME = "GPT_XTTS_FT"
    PROJECT_NAME = "XTTS_trainer"
    DASHBOARD_LOGGER = "tensorboard"
    LOGGER_URI = None

    # Set here the path that the checkpoints will be saved. Default: ./run/training/
    # OUT_PATH = os.path.join(output_path, "run", "training")
    OUT_PATH = output_path

    # Training Parameters
    OPTIMIZER_WD_ONLY_ON_WEIGHTS = True  # for multi-gpu training please make it False
    START_WITH_EVAL = False  # if True it will star with evaluation
    BATCH_SIZE = batch_size  # set here the batch size
    GRAD_ACUMM_STEPS = grad_acumm  # set here the grad accumulation steps


    # Define here the dataset that you want to use for the fine-tuning on.
    DATASETS_CONFIG_LIST = []
    for metadata in metadatas:
        train_csv, eval_csv, language = metadata.split(",")
        print(train_csv, eval_csv, language)

        config_dataset = BaseDatasetConfig(
            formatter="coqui",
            dataset_name="ft_dataset",
            path=os.path.dirname(train_csv),
            meta_file_train=os.path.basename(train_csv),
            meta_file_val=os.path.basename(eval_csv),
            language=language,
        )

        DATASETS_CONFIG_LIST.append(config_dataset)

    # Define the path where XTTS v2.0.1 files will be downloaded
    CHECKPOINTS_OUT_PATH = os.path.join(OUT_PATH, "XTTS_v2.0_original_model_files/")
    os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)

    # DVAE files
    DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
    MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"

    # Set the path to the downloaded files
    DVAE_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
    MEL_NORM_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))

    # download DVAE files if needed
    if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
        print(" > Downloading DVAE files!")
        ModelManager._download_model_files([MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)


    # Download XTTS v2.0 checkpoint if needed
    TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
    XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
    XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"

    # XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
    TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(TOKENIZER_FILE_LINK))  # vocab.json file
    XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CHECKPOINT_LINK))  # model.pth file
    XTTS_CONFIG_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))  # config.json file

    # download XTTS v2.0 files if needed
    if not os.path.isfile(TOKENIZER_FILE):
        print(" > Downloading XTTS v2.0 tokenizer!")
        ModelManager._download_model_files(
            [TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
        )
    if not os.path.isfile(XTTS_CHECKPOINT):
        print(" > Downloading XTTS v2.0 checkpoint!")
        ModelManager._download_model_files(
            [XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
        )
    if not os.path.isfile(XTTS_CONFIG_FILE):
        print(" > Downloading XTTS v2.0 config!")
        ModelManager._download_model_files(
            [XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
        )

    # init args and config
    model_args = GPTArgs(
        max_conditioning_length=264600,  # 12 secs
        min_conditioning_length=88200,  # 4 secs
        debug_loading_failures=False,
        max_wav_length=max_audio_length,  # ~11.6 seconds
        max_text_length=max_text_length,
        mel_norm_file=MEL_NORM_FILE,
        dvae_checkpoint=DVAE_CHECKPOINT,
        xtts_checkpoint=XTTS_CHECKPOINT,  # checkpoint path of the model that you want to fine-tune
        tokenizer_file=TOKENIZER_FILE,
        gpt_num_audio_tokens=1026,
        gpt_start_audio_token=1024,
        gpt_stop_audio_token=1025,
        gpt_use_masking_gt_prompt_approach=True,
        gpt_use_perceiver_resampler=True,
    )
    # define audio config
    audio_config = XttsAudioConfig(sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
    # training parameters config

    config = GPTTrainerConfig()

    config.load_json(XTTS_CONFIG_FILE)

    config.epochs = num_epochs
    config.output_path = OUT_PATH
    config.model_args = model_args
    config.run_name = RUN_NAME
    config.project_name = PROJECT_NAME
    config.run_description = """
        GPT XTTS training
        """,
    config.dashboard_logger = DASHBOARD_LOGGER
    config.logger_uri = LOGGER_URI
    config.audio = audio_config
    config.batch_size = BATCH_SIZE
    config.num_loader_workers = 4
    config.eval_split_max_size = 256
    config.print_step = 50
    config.plot_step = 100
    config.log_model_step = 100
    config.save_step = save_step
    config.save_n_checkpoints = 1
    config.save_checkpoints = True
    config.print_eval = False
    config.optimizer = "AdamW"
    config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
    config.optimizer_params = {"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay}
    config.lr = lr
    config.lr_scheduler = "MultiStepLR"
    config.lr_scheduler_params = {"milestones": [
        save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1}
    config.test_sentences = []

    # init the model from config
    model = GPTTrainer.init_from_config(config)

    # load training samples
    train_samples, eval_samples = load_tts_samples(
        DATASETS_CONFIG_LIST,
        eval_split=True,
        eval_split_max_size=config.eval_split_max_size,
        eval_split_size=config.eval_split_size,
    )

    # init the trainer and 🚀
    trainer = Trainer(
        TrainerArgs(
            restore_path=None,  # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
            skip_train_epoch=False,
            start_with_eval=START_WITH_EVAL,
            grad_accum_steps=GRAD_ACUMM_STEPS
        ),
        config,
        #output_path=os.path.join(output_path, "run", "training"),
        output_path=os.path.join(output_path),
        model=model,
        train_samples=train_samples,
        eval_samples=eval_samples,
    )
    trainer.fit()

    # get the longest text audio file to use as speaker reference
    samples_len = [len(item["text"].split(" ")) for item in train_samples]
    longest_text_idx =  samples_len.index(max(samples_len))
    speaker_ref = train_samples[longest_text_idx]["audio_file"]

    trainer_out_path = trainer.output_path

    # deallocate VRAM and RAM
    del model, trainer, train_samples, eval_samples
    gc.collect()

    return trainer_out_path

if __name__ == "__main__":
    parser = create_xtts_trainer_parser()
    args = parser.parse_args()

    trainer_out_path = train_gpt(
        metadatas=args.metadatas,
        output_path=args.output_path,
        num_epochs=args.num_epochs,
        batch_size=args.batch_size,
        grad_acumm=args.grad_acumm,
        weight_decay=args.weight_decay,
        lr=args.lr,
        max_text_length=args.max_text_length,
        max_audio_length=args.max_audio_length,
        save_step=args.save_step
    )

    print(f"Checkpoint saved in dir: {trainer_out_path}")