File size: 10,148 Bytes
56dd203 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import gc
import torch
from trainer import Trainer, TrainerArgs
from TTS.config.shared_configs import BaseDatasetConfig
from TTS.tts.datasets import load_tts_samples
from TTS.tts.layers.xtts.trainer.gpt_trainer import GPTArgs, GPTTrainer, GPTTrainerConfig, XttsAudioConfig
from TTS.utils.manage import ModelManager
from dataclasses import dataclass, field
from typing import Optional
from transformers import HfArgumentParser
import argparse
def create_xtts_trainer_parser():
parser = argparse.ArgumentParser(description="Arguments for XTTS Trainer")
parser.add_argument("--output_path", type=str, required=True,
help="Path to pretrained + checkpoint model")
parser.add_argument("--metadatas", nargs='+', type=str, required=True,
help="train_csv_path,eval_csv_path,language")
parser.add_argument("--num_epochs", type=int, default=1,
help="Number of epochs")
parser.add_argument("--batch_size", type=int, default=1,
help="Mini batch size")
parser.add_argument("--grad_acumm", type=int, default=1,
help="Grad accumulation steps")
parser.add_argument("--max_audio_length", type=int, default=255995,
help="Max audio length")
parser.add_argument("--max_text_length", type=int, default=200,
help="Max text length")
parser.add_argument("--weight_decay", type=float, default=1e-2,
help="Weight decay")
parser.add_argument("--lr", type=float, default=5e-6,
help="Learning rate")
parser.add_argument("--save_step", type=int, default=5000,
help="Save step")
parser.add_argument("--tf32_matmul", type=bool, default=False,
help="Enable or disable Torch TF32 MatMul")
parser.add_argument("--tf32_cudnn", type=bool, default=False,
help="Enable or disable Torch TF32 CUDNN")
return parser
def train_gpt(metadatas, num_epochs, batch_size, grad_acumm, output_path, max_audio_length, max_text_length, lr, weight_decay, save_step):
# Logging parameters
RUN_NAME = "GPT_XTTS_FT"
PROJECT_NAME = "XTTS_trainer"
DASHBOARD_LOGGER = "tensorboard"
LOGGER_URI = None
# Set here the path that the checkpoints will be saved. Default: ./run/training/
# OUT_PATH = os.path.join(output_path, "run", "training")
OUT_PATH = output_path
# Training Parameters
# for multi-gpu training please make it False
OPTIMIZER_WD_ONLY_ON_WEIGHTS = True
START_WITH_EVAL = False # if True it will star with evaluation
BATCH_SIZE = batch_size # set here the batch size
GRAD_ACUMM_STEPS = grad_acumm # set here the grad accumulation steps
# Define here the dataset that you want to use for the fine-tuning on.
DATASETS_CONFIG_LIST = []
for metadata in metadatas:
train_csv, eval_csv, language = metadata.split(",")
print(train_csv, eval_csv, language)
config_dataset = BaseDatasetConfig(
formatter="coqui",
dataset_name="ft_dataset",
path=os.path.dirname(train_csv),
meta_file_train=os.path.basename(train_csv),
meta_file_val=os.path.basename(eval_csv),
language=language,
)
DATASETS_CONFIG_LIST.append(config_dataset)
# Define the path where XTTS v2.0.1 files will be downloaded
CHECKPOINTS_OUT_PATH = os.path.join(
OUT_PATH, "XTTS_v2.0_original_model_files/")
os.makedirs(CHECKPOINTS_OUT_PATH, exist_ok=True)
# DVAE files
DVAE_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/dvae.pth"
MEL_NORM_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/mel_stats.pth"
# Set the path to the downloaded files
DVAE_CHECKPOINT = os.path.join(
CHECKPOINTS_OUT_PATH, os.path.basename(DVAE_CHECKPOINT_LINK))
MEL_NORM_FILE = os.path.join(
CHECKPOINTS_OUT_PATH, os.path.basename(MEL_NORM_LINK))
# download DVAE files if needed
if not os.path.isfile(DVAE_CHECKPOINT) or not os.path.isfile(MEL_NORM_FILE):
print(" > Downloading DVAE files!")
ModelManager._download_model_files(
[MEL_NORM_LINK, DVAE_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True)
# Download XTTS v2.0 checkpoint if needed
TOKENIZER_FILE_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/vocab.json"
XTTS_CHECKPOINT_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/model.pth"
XTTS_CONFIG_LINK = "https://coqui.gateway.scarf.sh/hf-coqui/XTTS-v2/main/config.json"
# XTTS transfer learning parameters: You we need to provide the paths of XTTS model checkpoint that you want to do the fine tuning.
TOKENIZER_FILE = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
TOKENIZER_FILE_LINK)) # vocab.json file
XTTS_CHECKPOINT = os.path.join(CHECKPOINTS_OUT_PATH, os.path.basename(
XTTS_CHECKPOINT_LINK)) # model.pth file
XTTS_CONFIG_FILE = os.path.join(
# config.json file
CHECKPOINTS_OUT_PATH, os.path.basename(XTTS_CONFIG_LINK))
# download XTTS v2.0 files if needed
if not os.path.isfile(TOKENIZER_FILE):
print(" > Downloading XTTS v2.0 tokenizer!")
ModelManager._download_model_files(
[TOKENIZER_FILE_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CHECKPOINT):
print(" > Downloading XTTS v2.0 checkpoint!")
ModelManager._download_model_files(
[XTTS_CHECKPOINT_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
if not os.path.isfile(XTTS_CONFIG_FILE):
print(" > Downloading XTTS v2.0 config!")
ModelManager._download_model_files(
[XTTS_CONFIG_LINK], CHECKPOINTS_OUT_PATH, progress_bar=True
)
# init args and config
model_args = GPTArgs(
max_conditioning_length=264600, # 12 secs
min_conditioning_length=88200, # 4 secs
debug_loading_failures=False,
max_wav_length=max_audio_length, # ~11.6 seconds
max_text_length=max_text_length,
mel_norm_file=MEL_NORM_FILE,
dvae_checkpoint=DVAE_CHECKPOINT,
# checkpoint path of the model that you want to fine-tune
xtts_checkpoint=XTTS_CHECKPOINT,
tokenizer_file=TOKENIZER_FILE,
gpt_num_audio_tokens=1026,
gpt_start_audio_token=1024,
gpt_stop_audio_token=1025,
gpt_use_masking_gt_prompt_approach=True,
gpt_use_perceiver_resampler=True,
)
# define audio config
audio_config = XttsAudioConfig(
sample_rate=22050, dvae_sample_rate=22050, output_sample_rate=24000)
# training parameters config
config = GPTTrainerConfig()
config.load_json(XTTS_CONFIG_FILE)
config.epochs = num_epochs
config.output_path = OUT_PATH
config.model_args = model_args
config.run_name = RUN_NAME
config.project_name = PROJECT_NAME
config.run_description = """
GPT XTTS training
""",
config.dashboard_logger = DASHBOARD_LOGGER
config.logger_uri = LOGGER_URI
config.audio = audio_config
config.batch_size = BATCH_SIZE
config.num_loader_workers = 4
config.eval_split_max_size = 256
config.print_step = 50
config.plot_step = 100
config.log_model_step = 100
config.save_step = save_step
config.save_n_checkpoints = 1
config.save_checkpoints = True
config.print_eval = False
config.optimizer = "AdamW"
config.optimizer_wd_only_on_weights = OPTIMIZER_WD_ONLY_ON_WEIGHTS
config.optimizer_params = {
"betas": [0.9, 0.96], "eps": 1e-8, "weight_decay": weight_decay}
config.lr = lr
config.lr_scheduler = "MultiStepLR"
config.lr_scheduler_params = {"milestones": [
save_step * 3, save_step * 3 * 2, save_step * 3 * 3], "gamma": 0.5, "last_epoch": -1}
config.test_sentences = []
# init the model from config
model = GPTTrainer.init_from_config(config)
# load training samples
train_samples, eval_samples = load_tts_samples(
DATASETS_CONFIG_LIST,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the trainer and 🚀
trainer = Trainer(
TrainerArgs(
restore_path=None, # xtts checkpoint is restored via xtts_checkpoint key so no need of restore it using Trainer restore_path parameter
skip_train_epoch=False,
start_with_eval=START_WITH_EVAL,
grad_accum_steps=GRAD_ACUMM_STEPS
),
config,
# output_path=os.path.join(output_path, "run", "training"),
output_path=os.path.join(output_path),
model=model,
train_samples=train_samples,
eval_samples=eval_samples,
)
trainer.fit()
# get the longest text audio file to use as speaker reference
samples_len = [len(item["text"].split(" ")) for item in train_samples]
longest_text_idx = samples_len.index(max(samples_len))
speaker_ref = train_samples[longest_text_idx]["audio_file"]
trainer_out_path = trainer.output_path
# deallocate VRAM and RAM
del model, trainer, train_samples, eval_samples
gc.collect()
return trainer_out_path
if __name__ == "__main__":
parser = create_xtts_trainer_parser()
args = parser.parse_args()
# Set Torch TF32 MatMul and CUDNN based on the command line arguments
torch.backends.cuda.matmul.allow_tf32 = args.tf32_matmul
torch.backends.cudnn.allow_tf32 = args.tf32_cudnn
trainer_out_path = train_gpt(
metadatas=args.metadatas,
output_path=args.output_path,
num_epochs=args.num_epochs,
batch_size=args.batch_size,
grad_acumm=args.grad_acumm,
weight_decay=args.weight_decay,
lr=args.lr,
max_text_length=args.max_text_length,
max_audio_length=args.max_audio_length,
save_step=args.save_step
)
print(f"Checkpoint saved in dir: {trainer_out_path}")
|