Update app.py
Browse files
app.py
CHANGED
@@ -1,50 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
|
3 |
-
from transformers import BertTokenizer, EncoderDecoderModel, EncoderDecoderConfig
|
4 |
-
model_ckpt = 'ardavey/bert2gpt-indosum'
|
5 |
-
tokenizer = BertTokenizer.from_pretrained(model_ckpt)
|
6 |
-
tokenizer.bos_token = tokenizer.cls_token
|
7 |
-
tokenizer.eos_token = tokenizer.sep_token
|
8 |
-
|
9 |
-
config = EncoderDecoderConfig.from_pretrained(model_ckpt)
|
10 |
-
config.early_stopping = True
|
11 |
-
|
12 |
-
model = EncoderDecoderModel.from_pretrained(model_ckpt, config=config)
|
13 |
-
|
14 |
-
text = st.text('Enter an article to summarize:')
|
15 |
-
|
16 |
-
if text:
|
17 |
-
input_ids = tokenizer.encode(custom_text, return_tensors='pt', padding=True, truncation=True, max_length=512)
|
18 |
-
summary_ids = model.generate(input_ids,
|
19 |
-
min_length=40,
|
20 |
-
max_length=200,
|
21 |
-
num_beams=10,
|
22 |
-
repetition_penalty=2.0,
|
23 |
-
length_penalty=1.0,
|
24 |
-
no_repeat_ngram_size=3,
|
25 |
-
use_cache=True,
|
26 |
-
do_sample = False,
|
27 |
-
top_k = 50,
|
28 |
-
)
|
29 |
-
|
30 |
-
summary_text = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
31 |
-
# capitalize the first letter of the summary and after each period
|
32 |
-
def capitalize_sentences(text):
|
33 |
-
sentences = text.split('. ')
|
34 |
-
capitalized_sentences = [sentence[0].upper() + sentence[1:] if sentence else sentence for sentence in sentences]
|
35 |
-
return '. '.join(capitalized_sentences)
|
36 |
-
|
37 |
-
# correct any wrong terms using the replacement_dict
|
38 |
-
replacement_dict = {
|
39 |
-
"optiglain": "OptiGuard",
|
40 |
-
"telkom university": "Telkom University",
|
41 |
-
"menyerbut": "menyebut"
|
42 |
-
}
|
43 |
-
|
44 |
-
for wrong_term, correct_term in replacement_dict.items():
|
45 |
-
summary_text = summary_text.replace(wrong_term, correct_term)
|
46 |
-
|
47 |
-
summary_text = capitalize_sentences(summary_text)
|
48 |
-
st.info(summary_text)
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|