davidberenstein1957 HF staff commited on
Commit
62dd1cd
·
1 Parent(s): a4385b8

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +172 -0
README.md ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: Transformers
3
+ tags:
4
+ - text-classification
5
+ - transformers
6
+ - argilla
7
+ ---
8
+
9
+ <!-- This model card has been generated automatically according to the information the `ArgillaTrainer` had access to. You
10
+ should probably proofread and complete it, then remove this comment. -->
11
+
12
+ # Model Card for *Model ID*
13
+
14
+ This model has been created with [Argilla](https://docs.argilla.io), trained with *Transformers*.
15
+
16
+ <!-- Provide a quick summary of what the model is/does. -->
17
+
18
+
19
+
20
+ ## Model training
21
+
22
+ Training the model using the `ArgillaTrainer`:
23
+
24
+ ```python
25
+ # Load the dataset:
26
+ dataset = FeedbackDataset.from_argilla("...")
27
+
28
+ # Create the training task:
29
+ def formatting_func(sample):
30
+ text = sample["text"]
31
+ label = sample["label"][0]["value"]
32
+ return(text, label)
33
+
34
+ task = TrainingTask.for_text_classification(formatting_func=formatting_func)
35
+
36
+ # Create the ArgillaTrainer:
37
+ trainer = ArgillaTrainer(
38
+ dataset=dataset,
39
+ task=task,
40
+ framework="transformers",
41
+ model="bert-base-cased",
42
+ )
43
+
44
+ trainer.update_config({
45
+ "evaluation_strategy": "epoch",
46
+ "logging_dir": "./logs",
47
+ "logging_steps": 1,
48
+ "num_train_epochs": 1,
49
+ "output_dir": "textcat_model_transformers",
50
+ "use_mps_device": true
51
+ })
52
+
53
+ trainer.train(output_dir="None")
54
+ ```
55
+
56
+ You can test the type of predictions of this model like so:
57
+
58
+ ```python
59
+ trainer.predict("This is awesome!")
60
+ ```
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+
66
+ <!-- Provide a longer summary of what this model is. -->
67
+
68
+
69
+
70
+ - **Developed by:** [More Information Needed]
71
+ - **Shared by [optional]:** [More Information Needed]
72
+ - **Model type:** [More Information Needed]
73
+ - **Language(s) (NLP):** [More Information Needed]
74
+ - **License:** [More Information Needed]
75
+ - **Finetuned from model [optional]:** [More Information Needed]
76
+
77
+ <!--
78
+ ## Uses
79
+
80
+ *Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model.*
81
+ -->
82
+
83
+ <!--
84
+ ### Direct Use
85
+
86
+ *This section is for the model use without fine-tuning or plugging into a larger ecosystem/app.*
87
+ -->
88
+
89
+ <!--
90
+ ### Downstream Use [optional]
91
+
92
+ *This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app*
93
+ -->
94
+
95
+ <!--
96
+ ### Out-of-Scope Use
97
+
98
+ *This section addresses misuse, malicious use, and uses that the model will not work well for.*
99
+ -->
100
+
101
+ <!--
102
+ ## Bias, Risks, and Limitations
103
+
104
+ *This section is meant to convey both technical and sociotechnical limitations.*
105
+ -->
106
+
107
+ <!--
108
+ ### Recommendations
109
+
110
+ *This section is meant to convey recommendations with respect to the bias, risk, and technical limitations.*
111
+ -->
112
+
113
+ <!--
114
+ ## Training Details
115
+
116
+ ### Training Metrics
117
+
118
+ *Metrics related to the model training.*
119
+ -->
120
+
121
+ <!--
122
+ ### Training Hyperparameters
123
+
124
+ - **Training regime:** (fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision)
125
+ -->
126
+
127
+ <!--
128
+ ## Environmental Impact
129
+
130
+ *Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly*
131
+
132
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
133
+
134
+ - **Hardware Type:** [More Information Needed]
135
+ - **Hours used:** [More Information Needed]
136
+ - **Cloud Provider:** [More Information Needed]
137
+ - **Compute Region:** [More Information Needed]
138
+ - **Carbon Emitted:** [More Information Needed]
139
+ -->
140
+
141
+ ## Technical Specifications [optional]
142
+
143
+ ### Framework Versions
144
+
145
+ - Python: 3.9.17
146
+ - Argilla: 1.21.0-dev
147
+
148
+ <!--
149
+ ## Citation [optional]
150
+
151
+ *If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section.*
152
+
153
+ ### BibTeX
154
+ -->
155
+
156
+ <!--
157
+ ## Glossary [optional]
158
+
159
+ *If relevant, include terms and calculations in this section that can help readers understand the model or model card.*
160
+ -->
161
+
162
+ <!--
163
+ ## Model Card Authors [optional]
164
+
165
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
166
+ -->
167
+
168
+ <!--
169
+ ## Model Card Contact
170
+
171
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
172
+ -->