--- library_name: Transformers tags: - text-classification - transformers - argilla --- # Model Card for *Model ID* This model has been created with [Argilla](https://docs.argilla.io), trained with *Transformers*. ## Model training Training the model using the `ArgillaTrainer`: ```python # Load the dataset: dataset = FeedbackDataset.from_argilla("...") # Create the training task: def formatting_func(sample): text = sample["text"] label = sample["label"][0]["value"] return(text, label) task = TrainingTask.for_text_classification(formatting_func=formatting_func) # Create the ArgillaTrainer: trainer = ArgillaTrainer( dataset=dataset, task=task, framework="transformers", model="bert-base-cased", ) trainer.update_config({ "evaluation_strategy": "epoch", "logging_dir": "./logs", "logging_steps": 1, "num_train_epochs": 1, "output_dir": "textcat_model_transformers", "use_mps_device": true }) trainer.train(output_dir="None") ``` You can test the type of predictions of this model like so: ```python trainer.predict("This is awesome!") ``` ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ## Technical Specifications [optional] ### Framework Versions - Python: 3.9.17 - Argilla: 1.21.0-dev