arda-argmax commited on
Commit
7cef198
·
verified ·
1 Parent(s): eaab173

openai_whisper-large-v3-v20240930_626MB, 4-bit compressed, outlier_decomp std 3, no qlora

Browse files
openai_whisper-large-v3-v20240930_626MB/AudioEncoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:56793886ab1adb9ca8a4e335efbe8af6640f40d958ab2d29c3ad2d7d6f712e95
3
+ size 243
openai_whisper-large-v3-v20240930_626MB/AudioEncoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ffa9eb76e8e9d9be75a4d527e5249e61d67fd43081c5aa110fd24efa6c8c5ea3
3
+ size 348
openai_whisper-large-v3-v20240930_626MB/AudioEncoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Mixed (Float16, Palettized (4 bits), Sparse)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1280, 1, 1500]",
13
+ "name" : "encoder_output_embeds",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Ios16.softmax" : 32,
23
+ "Ios16.add" : 259,
24
+ "Ios16.mul" : 32,
25
+ "Ios16.constexprLutToDense" : 194,
26
+ "Ios16.constexprSparseToDense" : 192,
27
+ "Ios16.batchNorm" : 65,
28
+ "Ios16.gelu" : 34,
29
+ "Ios16.reshape" : 128,
30
+ "Ios16.matmul" : 64,
31
+ "Ios16.layerNorm" : 65,
32
+ "Ios16.conv" : 388
33
+ },
34
+ "computePrecision" : "Mixed (Float16, Int32)",
35
+ "isUpdatable" : "0",
36
+ "availability" : {
37
+ "macOS" : "13.0",
38
+ "tvOS" : "16.0",
39
+ "visionOS" : "1.0",
40
+ "watchOS" : "9.0",
41
+ "iOS" : "16.0",
42
+ "macCatalyst" : "16.0"
43
+ },
44
+ "modelType" : {
45
+ "name" : "MLModelType_mlProgram"
46
+ },
47
+ "userDefinedMetadata" : {
48
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
49
+ "com.github.apple.coremltools.source" : "torch==2.4.1",
50
+ "com.github.apple.coremltools.version" : "8.0"
51
+ },
52
+ "inputSchema" : [
53
+ {
54
+ "hasShapeFlexibility" : "0",
55
+ "isOptional" : "0",
56
+ "dataType" : "Float16",
57
+ "formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
58
+ "shortDescription" : "",
59
+ "shape" : "[1, 128, 1, 3000]",
60
+ "name" : "melspectrogram_features",
61
+ "type" : "MultiArray"
62
+ }
63
+ ],
64
+ "generatedClassName" : "AudioEncoder_mixedBitPalettized_4_0_bit",
65
+ "method" : "predict"
66
+ }
67
+ ]
openai_whisper-large-v3-v20240930_626MB/AudioEncoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
openai_whisper-large-v3-v20240930_626MB/AudioEncoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4740fa28ed65907af754af893dfce98473fafb84dd8d718ad346985fe7678c1
3
+ size 421968768
openai_whisper-large-v3-v20240930_626MB/MelSpectrogram.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5be419f8622083ac7046306400643539f0e7577c843448c36defc090d41e7ce
3
+ size 243
openai_whisper-large-v3-v20240930_626MB/MelSpectrogram.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bfc12cffc2e45e039c7a18f384f09adffb72c182fcd93f9413d405d1a6c1130
3
+ size 329
openai_whisper-large-v3-v20240930_626MB/MelSpectrogram.mlmodelc/metadata.json ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Float16",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 128 × 1 × 3000)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 128, 1, 3000]",
13
+ "name" : "melspectrogram_features",
14
+ "type" : "MultiArray"
15
+ }
16
+ ],
17
+ "modelParameters" : [
18
+
19
+ ],
20
+ "specificationVersion" : 7,
21
+ "mlProgramOperationTypeHistogram" : {
22
+ "Pad" : 1,
23
+ "Ios16.mul" : 2,
24
+ "SliceByIndex" : 1,
25
+ "Ios16.sub" : 1,
26
+ "Ios16.log" : 1,
27
+ "Ios16.conv" : 2,
28
+ "Ios16.add" : 3,
29
+ "Ios16.square" : 2,
30
+ "Ios16.matmul" : 1,
31
+ "Squeeze" : 2,
32
+ "Ios16.maximum" : 1,
33
+ "ExpandDims" : 4,
34
+ "Ios16.reduceMax" : 1,
35
+ "Identity" : 1,
36
+ "Ios16.reshape" : 2
37
+ },
38
+ "computePrecision" : "Mixed (Float16, Int32)",
39
+ "isUpdatable" : "0",
40
+ "availability" : {
41
+ "macOS" : "13.0",
42
+ "tvOS" : "16.0",
43
+ "visionOS" : "1.0",
44
+ "watchOS" : "9.0",
45
+ "iOS" : "16.0",
46
+ "macCatalyst" : "16.0"
47
+ },
48
+ "modelType" : {
49
+ "name" : "MLModelType_mlProgram"
50
+ },
51
+ "userDefinedMetadata" : {
52
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
53
+ "com.github.apple.coremltools.source" : "torch==2.4.1",
54
+ "com.github.apple.coremltools.version" : "8.0"
55
+ },
56
+ "inputSchema" : [
57
+ {
58
+ "hasShapeFlexibility" : "0",
59
+ "isOptional" : "0",
60
+ "dataType" : "Float16",
61
+ "formattedType" : "MultiArray (Float16 480000)",
62
+ "shortDescription" : "",
63
+ "shape" : "[480000]",
64
+ "name" : "audio",
65
+ "type" : "MultiArray"
66
+ }
67
+ ],
68
+ "generatedClassName" : "MelSpectrogram",
69
+ "method" : "predict"
70
+ }
71
+ ]
openai_whisper-large-v3-v20240930_626MB/MelSpectrogram.mlmodelc/model.mil ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ program(1.0)
2
+ [buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "3304.5.2"}, {"coremlc-version", "3304.6.2"}, {"coremltools-component-torch", "2.4.1"}, {"coremltools-source-dialect", "TorchScript"}, {"coremltools-version", "8.0"}})]
3
+ {
4
+ func main<ios16>(tensor<fp16, [480000]> audio) {
5
+ tensor<int32, [3]> var_10 = const()[name = tensor<string, []>("op_10"), val = tensor<int32, [3]>([1, 1, 480000])];
6
+ tensor<fp16, [1, 1, 480000]> input_1_cast_fp16 = reshape(shape = var_10, x = audio)[name = tensor<string, []>("input_1_cast_fp16")];
7
+ tensor<int32, [6]> input_3_pad_0 = const()[name = tensor<string, []>("input_3_pad_0"), val = tensor<int32, [6]>([0, 0, 0, 0, 200, 200])];
8
+ tensor<string, []> input_3_mode_0 = const()[name = tensor<string, []>("input_3_mode_0"), val = tensor<string, []>("reflect")];
9
+ tensor<fp16, []> const_1_to_fp16 = const()[name = tensor<string, []>("const_1_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
10
+ tensor<fp16, [1, 1, 480400]> input_3_cast_fp16 = pad(constant_val = const_1_to_fp16, mode = input_3_mode_0, pad = input_3_pad_0, x = input_1_cast_fp16)[name = tensor<string, []>("input_3_cast_fp16")];
11
+ tensor<int32, [1]> var_22 = const()[name = tensor<string, []>("op_22"), val = tensor<int32, [1]>([480400])];
12
+ tensor<fp16, [480400]> input_cast_fp16 = reshape(shape = var_22, x = input_3_cast_fp16)[name = tensor<string, []>("input_cast_fp16")];
13
+ tensor<int32, [1]> expand_dims_0_axes_0 = const()[name = tensor<string, []>("expand_dims_0_axes_0"), val = tensor<int32, [1]>([0])];
14
+ tensor<fp16, [1, 480400]> expand_dims_0_cast_fp16 = expand_dims(axes = expand_dims_0_axes_0, x = input_cast_fp16)[name = tensor<string, []>("expand_dims_0_cast_fp16")];
15
+ tensor<int32, [1]> expand_dims_3 = const()[name = tensor<string, []>("expand_dims_3"), val = tensor<int32, [1]>([160])];
16
+ tensor<int32, [1]> expand_dims_4_axes_0 = const()[name = tensor<string, []>("expand_dims_4_axes_0"), val = tensor<int32, [1]>([1])];
17
+ tensor<fp16, [1, 1, 480400]> expand_dims_4_cast_fp16 = expand_dims(axes = expand_dims_4_axes_0, x = expand_dims_0_cast_fp16)[name = tensor<string, []>("expand_dims_4_cast_fp16")];
18
+ tensor<string, []> conv_0_pad_type_0 = const()[name = tensor<string, []>("conv_0_pad_type_0"), val = tensor<string, []>("valid")];
19
+ tensor<int32, [2]> conv_0_pad_0 = const()[name = tensor<string, []>("conv_0_pad_0"), val = tensor<int32, [2]>([0, 0])];
20
+ tensor<int32, [1]> conv_0_dilations_0 = const()[name = tensor<string, []>("conv_0_dilations_0"), val = tensor<int32, [1]>([1])];
21
+ tensor<int32, []> conv_0_groups_0 = const()[name = tensor<string, []>("conv_0_groups_0"), val = tensor<int32, []>(1)];
22
+ tensor<fp16, [201, 1, 400]> expand_dims_1_to_fp16 = const()[name = tensor<string, []>("expand_dims_1_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
23
+ tensor<fp16, [1, 201, 3001]> conv_0_cast_fp16 = conv(dilations = conv_0_dilations_0, groups = conv_0_groups_0, pad = conv_0_pad_0, pad_type = conv_0_pad_type_0, strides = expand_dims_3, weight = expand_dims_1_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_0_cast_fp16")];
24
+ tensor<string, []> conv_1_pad_type_0 = const()[name = tensor<string, []>("conv_1_pad_type_0"), val = tensor<string, []>("valid")];
25
+ tensor<int32, [2]> conv_1_pad_0 = const()[name = tensor<string, []>("conv_1_pad_0"), val = tensor<int32, [2]>([0, 0])];
26
+ tensor<int32, [1]> conv_1_dilations_0 = const()[name = tensor<string, []>("conv_1_dilations_0"), val = tensor<int32, [1]>([1])];
27
+ tensor<int32, []> conv_1_groups_0 = const()[name = tensor<string, []>("conv_1_groups_0"), val = tensor<int32, []>(1)];
28
+ tensor<fp16, [201, 1, 400]> expand_dims_2_to_fp16 = const()[name = tensor<string, []>("expand_dims_2_to_fp16"), val = tensor<fp16, [201, 1, 400]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(160960)))];
29
+ tensor<fp16, [1, 201, 3001]> conv_1_cast_fp16 = conv(dilations = conv_1_dilations_0, groups = conv_1_groups_0, pad = conv_1_pad_0, pad_type = conv_1_pad_type_0, strides = expand_dims_3, weight = expand_dims_2_to_fp16, x = expand_dims_4_cast_fp16)[name = tensor<string, []>("conv_1_cast_fp16")];
30
+ tensor<int32, [1]> squeeze_0_axes_0 = const()[name = tensor<string, []>("squeeze_0_axes_0"), val = tensor<int32, [1]>([0])];
31
+ tensor<fp16, [201, 3001]> squeeze_0_cast_fp16 = squeeze(axes = squeeze_0_axes_0, x = conv_0_cast_fp16)[name = tensor<string, []>("squeeze_0_cast_fp16")];
32
+ tensor<int32, [1]> squeeze_1_axes_0 = const()[name = tensor<string, []>("squeeze_1_axes_0"), val = tensor<int32, [1]>([0])];
33
+ tensor<fp16, [201, 3001]> squeeze_1_cast_fp16 = squeeze(axes = squeeze_1_axes_0, x = conv_1_cast_fp16)[name = tensor<string, []>("squeeze_1_cast_fp16")];
34
+ tensor<fp16, [201, 3001]> square_0_cast_fp16 = square(x = squeeze_0_cast_fp16)[name = tensor<string, []>("square_0_cast_fp16")];
35
+ tensor<fp16, [201, 3001]> square_1_cast_fp16 = square(x = squeeze_1_cast_fp16)[name = tensor<string, []>("square_1_cast_fp16")];
36
+ tensor<fp16, [201, 3001]> add_1_cast_fp16 = add(x = square_0_cast_fp16, y = square_1_cast_fp16)[name = tensor<string, []>("add_1_cast_fp16")];
37
+ tensor<fp16, [201, 3001]> magnitudes_1_cast_fp16 = identity(x = add_1_cast_fp16)[name = tensor<string, []>("magnitudes_1_cast_fp16")];
38
+ tensor<int32, [2]> magnitudes_begin_0 = const()[name = tensor<string, []>("magnitudes_begin_0"), val = tensor<int32, [2]>([0, 0])];
39
+ tensor<int32, [2]> magnitudes_end_0 = const()[name = tensor<string, []>("magnitudes_end_0"), val = tensor<int32, [2]>([201, 3000])];
40
+ tensor<bool, [2]> magnitudes_end_mask_0 = const()[name = tensor<string, []>("magnitudes_end_mask_0"), val = tensor<bool, [2]>([true, false])];
41
+ tensor<fp16, [201, 3000]> magnitudes_cast_fp16 = slice_by_index(begin = magnitudes_begin_0, end = magnitudes_end_0, end_mask = magnitudes_end_mask_0, x = magnitudes_1_cast_fp16)[name = tensor<string, []>("magnitudes_cast_fp16")];
42
+ tensor<bool, []> mel_spec_1_transpose_x_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_x_0"), val = tensor<bool, []>(false)];
43
+ tensor<bool, []> mel_spec_1_transpose_y_0 = const()[name = tensor<string, []>("mel_spec_1_transpose_y_0"), val = tensor<bool, []>(false)];
44
+ tensor<fp16, [128, 201]> mel_filters_to_fp16 = const()[name = tensor<string, []>("mel_filters_to_fp16"), val = tensor<fp16, [128, 201]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(321856)))];
45
+ tensor<fp16, [128, 3000]> mel_spec_1_cast_fp16 = matmul(transpose_x = mel_spec_1_transpose_x_0, transpose_y = mel_spec_1_transpose_y_0, x = mel_filters_to_fp16, y = magnitudes_cast_fp16)[name = tensor<string, []>("mel_spec_1_cast_fp16")];
46
+ tensor<fp16, []> var_41_to_fp16 = const()[name = tensor<string, []>("op_41_to_fp16"), val = tensor<fp16, []>(0x1p-24)];
47
+ tensor<fp16, [128, 3000]> mel_spec_cast_fp16 = add(x = mel_spec_1_cast_fp16, y = var_41_to_fp16)[name = tensor<string, []>("mel_spec_cast_fp16")];
48
+ tensor<fp16, []> log_0_epsilon_0_to_fp16 = const()[name = tensor<string, []>("log_0_epsilon_0_to_fp16"), val = tensor<fp16, []>(0x0p+0)];
49
+ tensor<fp16, [128, 3000]> log_0_cast_fp16 = log(epsilon = log_0_epsilon_0_to_fp16, x = mel_spec_cast_fp16)[name = tensor<string, []>("log_0_cast_fp16")];
50
+ tensor<fp16, []> mul_0_y_0_to_fp16 = const()[name = tensor<string, []>("mul_0_y_0_to_fp16"), val = tensor<fp16, []>(0x1.bccp-2)];
51
+ tensor<fp16, [128, 3000]> mul_0_cast_fp16 = mul(x = log_0_cast_fp16, y = mul_0_y_0_to_fp16)[name = tensor<string, []>("mul_0_cast_fp16")];
52
+ tensor<bool, []> var_44_keep_dims_0 = const()[name = tensor<string, []>("op_44_keep_dims_0"), val = tensor<bool, []>(false)];
53
+ tensor<fp16, []> var_44_cast_fp16 = reduce_max(keep_dims = var_44_keep_dims_0, x = mul_0_cast_fp16)[name = tensor<string, []>("op_44_cast_fp16")];
54
+ tensor<fp16, []> var_46_to_fp16 = const()[name = tensor<string, []>("op_46_to_fp16"), val = tensor<fp16, []>(0x1p+3)];
55
+ tensor<fp16, []> var_47_cast_fp16 = sub(x = var_44_cast_fp16, y = var_46_to_fp16)[name = tensor<string, []>("op_47_cast_fp16")];
56
+ tensor<fp16, [128, 3000]> log_spec_3_cast_fp16 = maximum(x = mul_0_cast_fp16, y = var_47_cast_fp16)[name = tensor<string, []>("log_spec_3_cast_fp16")];
57
+ tensor<fp16, []> var_50_to_fp16 = const()[name = tensor<string, []>("op_50_to_fp16"), val = tensor<fp16, []>(0x1p+2)];
58
+ tensor<fp16, [128, 3000]> var_51_cast_fp16 = add(x = log_spec_3_cast_fp16, y = var_50_to_fp16)[name = tensor<string, []>("op_51_cast_fp16")];
59
+ tensor<fp16, []> _inversed_log_spec_y_0_to_fp16 = const()[name = tensor<string, []>("_inversed_log_spec_y_0_to_fp16"), val = tensor<fp16, []>(0x1p-2)];
60
+ tensor<fp16, [128, 3000]> _inversed_log_spec_cast_fp16 = mul(x = var_51_cast_fp16, y = _inversed_log_spec_y_0_to_fp16)[name = tensor<string, []>("_inversed_log_spec_cast_fp16")];
61
+ tensor<int32, [1]> var_55_axes_0 = const()[name = tensor<string, []>("op_55_axes_0"), val = tensor<int32, [1]>([0])];
62
+ tensor<fp16, [1, 128, 3000]> var_55_cast_fp16 = expand_dims(axes = var_55_axes_0, x = _inversed_log_spec_cast_fp16)[name = tensor<string, []>("op_55_cast_fp16")];
63
+ tensor<int32, [1]> var_62_axes_0 = const()[name = tensor<string, []>("op_62_axes_0"), val = tensor<int32, [1]>([2])];
64
+ tensor<fp16, [1, 128, 1, 3000]> melspectrogram_features = expand_dims(axes = var_62_axes_0, x = var_55_cast_fp16)[name = tensor<string, []>("op_62_cast_fp16")];
65
+ } -> (melspectrogram_features);
66
+ }
openai_whisper-large-v3-v20240930_626MB/MelSpectrogram.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:009d9fb8f6b589accfa08cebf1c712ef07c3405229ce3cfb3a57ee033c9d8a49
3
+ size 373376
openai_whisper-large-v3-v20240930_626MB/TextDecoder.mlmodelc/analytics/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3913b8c9716b284a917cf3744f4d415f2a05e2b910594a14c6cc10092284d3f8
3
+ size 243
openai_whisper-large-v3-v20240930_626MB/TextDecoder.mlmodelc/coremldata.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3faabaf66930e66956d8291d0ff485fb382496e30a91a7185548b9b898ce90a9
3
+ size 633
openai_whisper-large-v3-v20240930_626MB/TextDecoder.mlmodelc/metadata.json ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "metadataOutputVersion" : "3.0",
4
+ "storagePrecision" : "Mixed (Float16, Palettized (4 bits), Palettized (6 bits), Sparse)",
5
+ "outputSchema" : [
6
+ {
7
+ "hasShapeFlexibility" : "0",
8
+ "isOptional" : "0",
9
+ "dataType" : "Float16",
10
+ "formattedType" : "MultiArray (Float16 1 × 1 × 51866)",
11
+ "shortDescription" : "",
12
+ "shape" : "[1, 1, 51866]",
13
+ "name" : "logits",
14
+ "type" : "MultiArray"
15
+ },
16
+ {
17
+ "hasShapeFlexibility" : "0",
18
+ "isOptional" : "0",
19
+ "dataType" : "Float16",
20
+ "formattedType" : "MultiArray (Float16 1 × 5120 × 1 × 1)",
21
+ "shortDescription" : "",
22
+ "shape" : "[1, 5120, 1, 1]",
23
+ "name" : "key_cache_updates",
24
+ "type" : "MultiArray"
25
+ },
26
+ {
27
+ "hasShapeFlexibility" : "0",
28
+ "isOptional" : "0",
29
+ "dataType" : "Float16",
30
+ "formattedType" : "MultiArray (Float16 1 × 5120 × 1 × 1)",
31
+ "shortDescription" : "",
32
+ "shape" : "[1, 5120, 1, 1]",
33
+ "name" : "value_cache_updates",
34
+ "type" : "MultiArray"
35
+ },
36
+ {
37
+ "hasShapeFlexibility" : "0",
38
+ "isOptional" : "0",
39
+ "dataType" : "Float16",
40
+ "formattedType" : "MultiArray (Float16 1 × 1500)",
41
+ "shortDescription" : "",
42
+ "shape" : "[1, 1500]",
43
+ "name" : "alignment_heads_weights",
44
+ "type" : "MultiArray"
45
+ }
46
+ ],
47
+ "modelParameters" : [
48
+
49
+ ],
50
+ "specificationVersion" : 7,
51
+ "mlProgramOperationTypeHistogram" : {
52
+ "Transpose" : 1,
53
+ "Ios16.gather" : 3,
54
+ "Squeeze" : 1,
55
+ "Ios16.reduceMean" : 1,
56
+ "Ios16.softmax" : 8,
57
+ "Split" : 2,
58
+ "Ios16.linear" : 1,
59
+ "Ios16.add" : 66,
60
+ "Concat" : 3,
61
+ "ExpandDims" : 6,
62
+ "Ios16.sub" : 1,
63
+ "Ios16.conv" : 80,
64
+ "Ios16.gelu" : 4,
65
+ "Ios16.constexprLutToDense" : 40,
66
+ "Ios16.constexprSparseToDense" : 41,
67
+ "Ios16.layerNorm" : 13,
68
+ "Ios16.batchNorm" : 13,
69
+ "Ios16.matmul" : 16,
70
+ "Ios16.reshape" : 32,
71
+ "SliceByIndex" : 12,
72
+ "Ios16.mul" : 24
73
+ },
74
+ "computePrecision" : "Mixed (Float16, Int32)",
75
+ "isUpdatable" : "0",
76
+ "availability" : {
77
+ "macOS" : "13.0",
78
+ "tvOS" : "16.0",
79
+ "visionOS" : "1.0",
80
+ "watchOS" : "9.0",
81
+ "iOS" : "16.0",
82
+ "macCatalyst" : "16.0"
83
+ },
84
+ "modelType" : {
85
+ "name" : "MLModelType_mlProgram"
86
+ },
87
+ "userDefinedMetadata" : {
88
+ "com.github.apple.coremltools.source_dialect" : "TorchScript",
89
+ "com.github.apple.coremltools.source" : "torch==2.4.1",
90
+ "com.github.apple.coremltools.version" : "8.0"
91
+ },
92
+ "inputSchema" : [
93
+ {
94
+ "hasShapeFlexibility" : "0",
95
+ "isOptional" : "0",
96
+ "dataType" : "Int32",
97
+ "formattedType" : "MultiArray (Int32 1)",
98
+ "shortDescription" : "",
99
+ "shape" : "[1]",
100
+ "name" : "input_ids",
101
+ "type" : "MultiArray"
102
+ },
103
+ {
104
+ "hasShapeFlexibility" : "0",
105
+ "isOptional" : "0",
106
+ "dataType" : "Int32",
107
+ "formattedType" : "MultiArray (Int32 1)",
108
+ "shortDescription" : "",
109
+ "shape" : "[1]",
110
+ "name" : "cache_length",
111
+ "type" : "MultiArray"
112
+ },
113
+ {
114
+ "hasShapeFlexibility" : "0",
115
+ "isOptional" : "0",
116
+ "dataType" : "Float16",
117
+ "formattedType" : "MultiArray (Float16 1 × 5120 × 1 × 448)",
118
+ "shortDescription" : "",
119
+ "shape" : "[1, 5120, 1, 448]",
120
+ "name" : "key_cache",
121
+ "type" : "MultiArray"
122
+ },
123
+ {
124
+ "hasShapeFlexibility" : "0",
125
+ "isOptional" : "0",
126
+ "dataType" : "Float16",
127
+ "formattedType" : "MultiArray (Float16 1 × 5120 × 1 × 448)",
128
+ "shortDescription" : "",
129
+ "shape" : "[1, 5120, 1, 448]",
130
+ "name" : "value_cache",
131
+ "type" : "MultiArray"
132
+ },
133
+ {
134
+ "hasShapeFlexibility" : "0",
135
+ "isOptional" : "0",
136
+ "dataType" : "Float16",
137
+ "formattedType" : "MultiArray (Float16 1 × 448)",
138
+ "shortDescription" : "",
139
+ "shape" : "[1, 448]",
140
+ "name" : "kv_cache_update_mask",
141
+ "type" : "MultiArray"
142
+ },
143
+ {
144
+ "hasShapeFlexibility" : "0",
145
+ "isOptional" : "0",
146
+ "dataType" : "Float16",
147
+ "formattedType" : "MultiArray (Float16 1 × 1280 × 1 × 1500)",
148
+ "shortDescription" : "",
149
+ "shape" : "[1, 1280, 1, 1500]",
150
+ "name" : "encoder_output_embeds",
151
+ "type" : "MultiArray"
152
+ },
153
+ {
154
+ "hasShapeFlexibility" : "0",
155
+ "isOptional" : "0",
156
+ "dataType" : "Float16",
157
+ "formattedType" : "MultiArray (Float16 1 × 448)",
158
+ "shortDescription" : "",
159
+ "shape" : "[1, 448]",
160
+ "name" : "decoder_key_padding_mask",
161
+ "type" : "MultiArray"
162
+ }
163
+ ],
164
+ "generatedClassName" : "TextDecoder_mixedBitPalettized_4_1_bit",
165
+ "method" : "predict"
166
+ }
167
+ ]
openai_whisper-large-v3-v20240930_626MB/TextDecoder.mlmodelc/model.mil ADDED
The diff for this file is too large to render. See raw diff
 
openai_whisper-large-v3-v20240930_626MB/TextDecoder.mlmodelc/weights/weight.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d69700903d518ada33170ab77faaaf464496fb9ff65752c6d5a6109aa2fb02db
3
+ size 203199860