File size: 3,466 Bytes
187b045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-small
tags:
- stuttered-speech
- speech-recognition
- asr
- whisper
- disfluency
- generated_from_trainer
datasets:
- arielcerdap/TimeStamped
metrics:
- wer
model-index:
- name: Whisper Small Optimized for Stuttered Speech
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: TimeStamped
      type: arielcerdap/TimeStamped
      args: 'config: en, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 15.852285521278992
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Optimized for Stuttered Speech

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the TimeStamped dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0628
- Wer: 15.8523
- Wer Ortho: 9.0384
- Cer: 9.0083

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- training_steps: 8000
- mixed_precision_training: Native AMP
- label_smoothing_factor: 0.1

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer     | Wer Ortho | Cer     |
|:-------------:|:-------:|:----:|:---------------:|:-------:|:---------:|:-------:|
| 1.5552        | 5.8187  | 500  | 1.7178          | 23.1142 | 12.5690   | 12.5620 |
| 1.4449        | 11.6316 | 1000 | 1.7658          | 14.3774 | 9.1288    | 9.1103  |
| 1.4477        | 17.4444 | 1500 | 1.8778          | 18.3517 | 13.5472   | 13.5171 |
| 1.4132        | 23.2573 | 2000 | 1.8607          | 13.6005 | 7.7101    | 7.6846  |
| 1.4065        | 29.0702 | 2500 | 1.8845          | 14.4112 | 8.2271    | 8.1993  |
| 1.4182        | 34.8889 | 3000 | 1.9307          | 14.4112 | 7.9953    | 7.9675  |
| 1.4177        | 40.7018 | 3500 | 1.9481          | 17.6649 | 10.8814   | 10.8535 |
| 1.4036        | 46.5146 | 4000 | 1.9508          | 15.2105 | 8.5331    | 8.5076  |
| 1.4012        | 52.3275 | 4500 | 1.9831          | 15.4695 | 8.7324    | 8.7069  |
| 1.4005        | 58.1404 | 5000 | 2.0116          | 15.6046 | 8.8252    | 8.7973  |
| 1.4143        | 63.9591 | 5500 | 2.0306          | 15.6609 | 8.9318    | 8.9040  |
| 1.4141        | 69.7719 | 6000 | 2.0445          | 15.7172 | 8.9573    | 8.9295  |
| 1.414         | 75.5848 | 6500 | 2.0525          | 15.8410 | 9.0083    | 8.9805  |
| 1.3998        | 81.3977 | 7000 | 2.0598          | 15.8523 | 9.0361    | 9.0060  |
| 1.3997        | 87.2105 | 7500 | 2.0625          | 15.8635 | 9.0454    | 9.0153  |
| 1.3997        | 93.0234 | 8000 | 2.0628          | 15.8523 | 9.0384    | 9.0083  |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1