arif-ariff
commited on
Commit
·
e370dc4
1
Parent(s):
184c8e0
tutorial code for food dataset
Browse files- .idea/.gitignore +8 -0
- .idea/assignment-7-image-classifier.iml +12 -0
- .idea/inspectionProfiles/Project_Default.xml +12 -0
- .idea/inspectionProfiles/profiles_settings.xml +6 -0
- .idea/misc.xml +4 -0
- .idea/modules.xml +8 -0
- .idea/vcs.xml +6 -0
- neural_models.py +149 -0
.idea/.gitignore
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Default ignored files
|
2 |
+
/shelf/
|
3 |
+
/workspace.xml
|
4 |
+
# Editor-based HTTP Client requests
|
5 |
+
/httpRequests/
|
6 |
+
# Datasource local storage ignored files
|
7 |
+
/dataSources/
|
8 |
+
/dataSources.local.xml
|
.idea/assignment-7-image-classifier.iml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<module type="PYTHON_MODULE" version="4">
|
3 |
+
<component name="NewModuleRootManager">
|
4 |
+
<content url="file://$MODULE_DIR$" />
|
5 |
+
<orderEntry type="jdk" jdkName="Python 3.9 (venv)" jdkType="Python SDK" />
|
6 |
+
<orderEntry type="sourceFolder" forTests="false" />
|
7 |
+
</component>
|
8 |
+
<component name="PyDocumentationSettings">
|
9 |
+
<option name="format" value="PLAIN" />
|
10 |
+
<option name="myDocStringFormat" value="Plain" />
|
11 |
+
</component>
|
12 |
+
</module>
|
.idea/inspectionProfiles/Project_Default.xml
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<profile version="1.0">
|
3 |
+
<option name="myName" value="Project Default" />
|
4 |
+
<inspection_tool class="PyPep8NamingInspection" enabled="true" level="WEAK WARNING" enabled_by_default="true">
|
5 |
+
<option name="ignoredErrors">
|
6 |
+
<list>
|
7 |
+
<option value="N803" />
|
8 |
+
</list>
|
9 |
+
</option>
|
10 |
+
</inspection_tool>
|
11 |
+
</profile>
|
12 |
+
</component>
|
.idea/inspectionProfiles/profiles_settings.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<component name="InspectionProjectProfileManager">
|
2 |
+
<settings>
|
3 |
+
<option name="USE_PROJECT_PROFILE" value="false" />
|
4 |
+
<version value="1.0" />
|
5 |
+
</settings>
|
6 |
+
</component>
|
.idea/misc.xml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.9 (venv)" project-jdk-type="Python SDK" />
|
4 |
+
</project>
|
.idea/modules.xml
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="ProjectModuleManager">
|
4 |
+
<modules>
|
5 |
+
<module fileurl="file://$PROJECT_DIR$/.idea/assignment-7-image-classifier.iml" filepath="$PROJECT_DIR$/.idea/assignment-7-image-classifier.iml" />
|
6 |
+
</modules>
|
7 |
+
</component>
|
8 |
+
</project>
|
.idea/vcs.xml
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<?xml version="1.0" encoding="UTF-8"?>
|
2 |
+
<project version="4">
|
3 |
+
<component name="VcsDirectoryMappings">
|
4 |
+
<mapping directory="" vcs="Git" />
|
5 |
+
</component>
|
6 |
+
</project>
|
neural_models.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from datasets import load_dataset
|
2 |
+
from transformers import AutoImageProcessor, create_optimizer, TFAutoModelForImageClassification, KerasMetricCallback, \
|
3 |
+
PushToHubCallback, pipeline
|
4 |
+
import tensorflow as tf
|
5 |
+
from tensorflow.python import keras
|
6 |
+
from keras import layers, losses
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
from transformers import DefaultDataCollator
|
10 |
+
import evaluate
|
11 |
+
|
12 |
+
|
13 |
+
def convert_to_tf_tensor(image: Image):
|
14 |
+
np_image = np.array(image)
|
15 |
+
tf_image = tf.convert_to_tensor(np_image)
|
16 |
+
|
17 |
+
# `expand_dims()` is used to add a batch dimension since
|
18 |
+
# the TF augmentation layers operates on batched inputs.
|
19 |
+
return tf.expand_dims(tf_image, 0)
|
20 |
+
|
21 |
+
|
22 |
+
def preprocess_train(example_batch):
|
23 |
+
"""Apply train_transforms across a batch."""
|
24 |
+
images = [
|
25 |
+
train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
|
26 |
+
]
|
27 |
+
example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
|
28 |
+
return example_batch
|
29 |
+
|
30 |
+
|
31 |
+
def preprocess_val(example_batch):
|
32 |
+
"""Apply val_transforms across a batch."""
|
33 |
+
images = [
|
34 |
+
val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"]
|
35 |
+
]
|
36 |
+
example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images]
|
37 |
+
return example_batch
|
38 |
+
|
39 |
+
|
40 |
+
def compute_metrics(eval_pred):
|
41 |
+
predictions, labels = eval_pred
|
42 |
+
predictions = np.argmax(predictions, axis=1)
|
43 |
+
return accuracy.compute(predictions=predictions, references=labels)
|
44 |
+
|
45 |
+
|
46 |
+
# load dataset
|
47 |
+
food = load_dataset("food101", split="train[:5000]")
|
48 |
+
# Split into train/test sets
|
49 |
+
food = food.train_test_split(test_size=0.2)
|
50 |
+
# an example
|
51 |
+
print(food["train"][0])
|
52 |
+
|
53 |
+
# Map label names to an integer and vice-versa
|
54 |
+
labels = food["train"].features["label"].names
|
55 |
+
label2id, id2label = dict(), dict()
|
56 |
+
for i, label in enumerate(labels):
|
57 |
+
label2id[label] = str(i)
|
58 |
+
id2label[str(i)] = label
|
59 |
+
|
60 |
+
# Should convert label id into a name
|
61 |
+
print(id2label[str(79)])
|
62 |
+
|
63 |
+
# Pre-processing with ViT
|
64 |
+
# Load image processor to process image into tensor
|
65 |
+
checkpoint = "google/vit-base-patch16-224-in21k"
|
66 |
+
image_processor = AutoImageProcessor.from_pretrained(checkpoint)
|
67 |
+
|
68 |
+
# To avoid overfitting and make the model more robust, add data augmentation to the training set.
|
69 |
+
# User Keras preprocessing layers to define transformations for the training set.
|
70 |
+
size = (image_processor.size["height"], image_processor.size["width"])
|
71 |
+
|
72 |
+
train_data_augmentation = keras.Sequential(
|
73 |
+
[
|
74 |
+
layers.RandomCrop(size[0], size[1]),
|
75 |
+
layers.Rescaling(scale=1.0 / 127.5, offset=-1),
|
76 |
+
layers.RandomFlip("horizontal"),
|
77 |
+
layers.RandomRotation(factor=0.02),
|
78 |
+
layers.RandomZoom(height_factor=0.2, width_factor=0.2),
|
79 |
+
],
|
80 |
+
name="train_data_augmentation",
|
81 |
+
)
|
82 |
+
|
83 |
+
val_data_augmentation = keras.Sequential(
|
84 |
+
[
|
85 |
+
layers.CenterCrop(size[0], size[1]),
|
86 |
+
layers.Rescaling(scale=1.0 / 127.5, offset=-1),
|
87 |
+
],
|
88 |
+
name="val_data_augmentation",
|
89 |
+
)
|
90 |
+
|
91 |
+
food["train"].set_transform(preprocess_train)
|
92 |
+
food["test"].set_transform(preprocess_val)
|
93 |
+
|
94 |
+
data_collator = DefaultDataCollator(return_tensors="tf")
|
95 |
+
|
96 |
+
accuracy = evaluate.load("accuracy")
|
97 |
+
|
98 |
+
# Set hyperparameters
|
99 |
+
batch_size = 16
|
100 |
+
num_epochs = 5
|
101 |
+
num_train_steps = len(food["train"]) * num_epochs
|
102 |
+
learning_rate = 3e-5
|
103 |
+
weight_decay_rate = 0.01
|
104 |
+
|
105 |
+
# define optimizer, learning rate schedule
|
106 |
+
optimizer, lr_schedule = create_optimizer(
|
107 |
+
init_lr=learning_rate,
|
108 |
+
num_train_steps=num_train_steps,
|
109 |
+
weight_decay_rate=weight_decay_rate,
|
110 |
+
num_warmup_steps=0,
|
111 |
+
)
|
112 |
+
|
113 |
+
# Load ViT along with label mappings
|
114 |
+
model = TFAutoModelForImageClassification.from_pretrained(
|
115 |
+
checkpoint,
|
116 |
+
id2label=id2label,
|
117 |
+
label2id=label2id,
|
118 |
+
)
|
119 |
+
|
120 |
+
# converting datasets to tf.data.Dataset
|
121 |
+
tf_train_dataset = food["train"].to_tf_dataset(
|
122 |
+
columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator
|
123 |
+
)
|
124 |
+
|
125 |
+
tf_eval_dataset = food["test"].to_tf_dataset(
|
126 |
+
columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator
|
127 |
+
)
|
128 |
+
|
129 |
+
# Configure model for training
|
130 |
+
loss = losses.SparseCategoricalCrossentropy(from_logits=True)
|
131 |
+
model.compile(optimizer=optimizer, loss=loss)
|
132 |
+
|
133 |
+
|
134 |
+
metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset)
|
135 |
+
push_to_hub_callback = PushToHubCallback(
|
136 |
+
output_dir="../food_classifier",
|
137 |
+
tokenizer=image_processor,
|
138 |
+
save_strategy="no",
|
139 |
+
)
|
140 |
+
|
141 |
+
callbacks = [metric_callback, push_to_hub_callback]
|
142 |
+
|
143 |
+
model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs) #, callback=callbacks)
|
144 |
+
|
145 |
+
ds = load_dataset("food101", split="validation[:10]")
|
146 |
+
image = ds["image"][0]
|
147 |
+
classifier = pipeline("image-classification", model="my_awesome_food_model")
|
148 |
+
print(classifier(image))
|
149 |
+
|