from datasets import load_dataset from transformers import AutoImageProcessor, create_optimizer, TFAutoModelForImageClassification, KerasMetricCallback, \ PushToHubCallback, pipeline import tensorflow as tf from tensorflow.python import keras from keras import layers, losses import numpy as np from PIL import Image from transformers import DefaultDataCollator import evaluate def convert_to_tf_tensor(image: Image): np_image = np.array(image) tf_image = tf.convert_to_tensor(np_image) # `expand_dims()` is used to add a batch dimension since # the TF augmentation layers operates on batched inputs. return tf.expand_dims(tf_image, 0) def preprocess_train(example_batch): """Apply train_transforms across a batch.""" images = [ train_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch def preprocess_val(example_batch): """Apply val_transforms across a batch.""" images = [ val_data_augmentation(convert_to_tf_tensor(image.convert("RGB"))) for image in example_batch["image"] ] example_batch["pixel_values"] = [tf.transpose(tf.squeeze(image)) for image in images] return example_batch def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) # load dataset food = load_dataset("food101", split="train[:5000]") # Split into train/test sets food = food.train_test_split(test_size=0.2) # an example print(food["train"][0]) # Map label names to an integer and vice-versa labels = food["train"].features["label"].names label2id, id2label = dict(), dict() for i, label in enumerate(labels): label2id[label] = str(i) id2label[str(i)] = label # Should convert label id into a name print(id2label[str(79)]) # Pre-processing with ViT # Load image processor to process image into tensor checkpoint = "google/vit-base-patch16-224-in21k" image_processor = AutoImageProcessor.from_pretrained(checkpoint) # To avoid overfitting and make the model more robust, add data augmentation to the training set. # User Keras preprocessing layers to define transformations for the training set. size = (image_processor.size["height"], image_processor.size["width"]) train_data_augmentation = keras.Sequential( [ layers.RandomCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), layers.RandomFlip("horizontal"), layers.RandomRotation(factor=0.02), layers.RandomZoom(height_factor=0.2, width_factor=0.2), ], name="train_data_augmentation", ) val_data_augmentation = keras.Sequential( [ layers.CenterCrop(size[0], size[1]), layers.Rescaling(scale=1.0 / 127.5, offset=-1), ], name="val_data_augmentation", ) food["train"].set_transform(preprocess_train) food["test"].set_transform(preprocess_val) data_collator = DefaultDataCollator(return_tensors="tf") accuracy = evaluate.load("accuracy") # Set hyperparameters batch_size = 16 num_epochs = 5 num_train_steps = len(food["train"]) * num_epochs learning_rate = 3e-5 weight_decay_rate = 0.01 # define optimizer, learning rate schedule optimizer, lr_schedule = create_optimizer( init_lr=learning_rate, num_train_steps=num_train_steps, weight_decay_rate=weight_decay_rate, num_warmup_steps=0, ) # Load ViT along with label mappings model = TFAutoModelForImageClassification.from_pretrained( checkpoint, id2label=id2label, label2id=label2id, ) # converting datasets to tf.data.Dataset tf_train_dataset = food["train"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) tf_eval_dataset = food["test"].to_tf_dataset( columns="pixel_values", label_cols="label", shuffle=True, batch_size=batch_size, collate_fn=data_collator ) # Configure model for training loss = losses.SparseCategoricalCrossentropy(from_logits=True) model.compile(optimizer=optimizer, loss=loss) metric_callback = KerasMetricCallback(metric_fn=compute_metrics, eval_dataset=tf_eval_dataset) push_to_hub_callback = PushToHubCallback( output_dir="../food_classifier", tokenizer=image_processor, save_strategy="no", ) callbacks = [metric_callback, push_to_hub_callback] model.fit(tf_train_dataset, validation_data=tf_eval_dataset, epochs=num_epochs) #, callback=callbacks) ds = load_dataset("food101", split="validation[:10]") image = ds["image"][0] classifier = pipeline("image-classification", model="my_awesome_food_model") print(classifier(image))