Commit
·
5432da8
1
Parent(s):
ef977a3
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: bert-base-uncased
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- accuracy
|
8 |
+
- f1
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: w266_model2_BERT_LSTM_1
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# w266_model2_BERT_LSTM_1
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 2.6673
|
24 |
+
- Accuracy: {'accuracy': 0.586}
|
25 |
+
- F1: {'f1': 0.5941271393567649}
|
26 |
+
- Precision: {'precision': 0.6305594263991693}
|
27 |
+
- Recall: {'recall': 0.586}
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 5e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 5.0
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------:|:--------------------------:|:---------------------------------:|:------------------------------:|
|
58 |
+
| No log | 1.0 | 125 | 2.7886 | {'accuracy': 0.563} | {'f1': 0.5737642190234387} | {'precision': 0.6070380044002861} | {'recall': 0.563} |
|
59 |
+
| No log | 2.0 | 250 | 3.2762 | {'accuracy': 0.567} | {'f1': 0.5732065475023022} | {'precision': 0.6124992011023714} | {'recall': 0.567} |
|
60 |
+
| No log | 3.0 | 375 | 3.1370 | {'accuracy': 0.57} | {'f1': 0.5799666523302439} | {'precision': 0.6122839339063632} | {'recall': 0.57} |
|
61 |
+
| 0.0465 | 4.0 | 500 | 3.3590 | {'accuracy': 0.569} | {'f1': 0.5796357806282344} | {'precision': 0.6093440842818532} | {'recall': 0.5689999999999998} |
|
62 |
+
| 0.0465 | 5.0 | 625 | 3.4285 | {'accuracy': 0.57} | {'f1': 0.580483223593091} | {'precision': 0.618976915416096} | {'recall': 0.57} |
|
63 |
+
|
64 |
+
|
65 |
+
### Framework versions
|
66 |
+
|
67 |
+
- Transformers 4.31.0
|
68 |
+
- Pytorch 2.0.1+cu118
|
69 |
+
- Datasets 2.14.2
|
70 |
+
- Tokenizers 0.13.3
|