File size: 6,449 Bytes
0d85011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import numpy as np
import pandas as pd
import nltk, string, logging, pickle
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import ExtraTreesClassifier

# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

def transform_text(text):
    ps = PorterStemmer()
    text = text.lower()
    text = nltk.word_tokenize(text)
    
    y = []
    for i in text:
        if i.isalnum():
            y.append(i)
    
    text = y[:]
    y.clear()
    
    for i in text:
        if i not in stopwords.words('english') and i not in string.punctuation:
            y.append(i)
    
    text = y[:]
    y.clear()
    
    for i in text:
        y.append(ps.stem(i))
    
    return " ".join(y)

def plot_dataset_insights(df):
    plt.figure(figsize=(15, 5))
    
    plt.subplot(131)
    sns.histplot(data=df, x='num_characters', hue='target', bins=50)
    plt.title('Message Length Distribution')
    
    plt.subplot(132)
    df['target'].value_counts().plot(kind='bar')
    plt.title('Class Distribution')
    
    plt.subplot(133)
    sns.boxplot(data=df, x='target', y='num_words')
    plt.title('Word Count by Class')
    
    plt.tight_layout()
    plt.savefig('./graphs/dataset_insights.png')
    plt.close()

def plot_word_clouds(df):
    from wordcloud import WordCloud
    plt.figure(figsize=(15, 5))
    
    # Map text labels to numeric
    df['target_num'] = df['target'].map({'ham': 0, 'spam': 1})
    
    for idx, label in enumerate(['ham', 'spam']):
        # Get text for current label
        text = ' '.join(df[df['target'] == label]['transformed_text'])
        
        if not text.strip():
            logger.warning(f"No text found for label: {label}")
            continue
            
        try:
            wordcloud = WordCloud(width=800, height=400).generate(text)
            plt.subplot(1, 2, idx+1)
            plt.imshow(wordcloud)
            plt.axis('off')
            plt.title(f'Word Cloud - {label.upper()}')
        except Exception as e:
            logger.error(f"Error generating wordcloud for {label}: {e}")
    
    plt.savefig('./graphs/wordclouds.png')
    plt.close()

def plot_performance_metrics(y_test, y_pred, model):
    plt.figure(figsize=(15, 5))
    
    plt.subplot(131)
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
    plt.title('Confusion Matrix')
    
    plt.subplot(132)
    performance_df = pd.DataFrame({
        'Metric': ['Accuracy', 'Precision'],
        'Score': [accuracy_score(y_test, y_pred), precision_score(y_test, y_pred)]
    })
    sns.barplot(x='Metric', y='Score', data=performance_df)
    plt.title('Model Performance')
    
    plt.subplot(133)
    etc = model.named_estimators_['et']
    importances = pd.Series(etc.feature_importances_)
    importances.nlargest(10).plot(kind='bar')
    plt.title('Top 10 Important Features')
    
    plt.tight_layout()
    plt.savefig('./graphs/performance_metrics.png')
    plt.close()

def save_metrics(metrics):
    with open('./models/metrics.txt', 'w') as f:
        for metric, value in metrics.items():
            f.write(f"{metric}: {value:.4f}\n")

def main():
    try:
        # Load and preprocess data
        logger.info("Loading data...")
        df = pd.read_csv('./data/spam.csv', encoding='latin-1')
        df = df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1)
        df = df.rename(columns={'v1': 'target', 'v2': 'text'})
        
        logger.info(f"Target value counts:\n{df['target'].value_counts()}")
        
        # Add numerical features
        df['num_characters'] = df['text'].apply(len)
        df['num_words'] = df['text'].apply(lambda x: len(nltk.word_tokenize(x)))
        df['num_sentences'] = df['text'].apply(lambda x: len(nltk.sent_tokenize(x)))
        
        logger.info("Transforming text...")
        df['transformed_text'] = df['text'].apply(transform_text)
        
        # Verify transformed text
        logger.info(f"Sample transformed text:\n{df['transformed_text'].head()}")
        
        logger.info("Generating visualizations...")
        plot_dataset_insights(df)
        plot_word_clouds(df)
        
        # Text vectorization
        tfidf = TfidfVectorizer(max_features=3000)
        X = tfidf.fit_transform(df['transformed_text']).toarray()
        # Convert target to numeric for model
        y = (df['target'] == 'spam').astype(int)
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)
        
        # Create ensemble
        logger.info("Training model...")
        svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
        mnb = MultinomialNB()
        etc = ExtraTreesClassifier(n_estimators=50, random_state=2)
        
        voting = VotingClassifier([('svm', svc), ('nb', mnb), ('et', etc)], voting='soft')
        voting.fit(X_train, y_train)
        
        y_pred = voting.predict(X_test)
        
        metrics = {
            "Accuracy": accuracy_score(y_test, y_pred),
            "Precision": precision_score(y_test, y_pred)
        }
        
        save_metrics(metrics)
        for metric, value in metrics.items():
            logger.info(f"{metric}: {value:.4f}")
        
        plot_performance_metrics(y_test, y_pred, voting)
        
        logger.info("Saving models...")
        pickle.dump(tfidf, open('./models/vectorizer.pkl', 'wb'))
        pickle.dump(voting, open('./models/model.pkl', 'wb'))
        
        logger.info("Training completed successfully")
        
    except Exception as e:
        logger.error(f"An error occurred: {e}")
        raise

if __name__ == "__main__":
    try:
        nltk.download('punkt')
        nltk.download('stopwords')
        main()
    except Exception as e:
        print(f"Fatal error: {e}")