File size: 6,449 Bytes
0d85011 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
import numpy as np
import pandas as pd
import nltk, string, logging, pickle
import matplotlib.pyplot as plt
import seaborn as sns
from collections import Counter
from nltk.corpus import stopwords
from nltk.stem.porter import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, confusion_matrix, precision_score
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import ExtraTreesClassifier
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def transform_text(text):
ps = PorterStemmer()
text = text.lower()
text = nltk.word_tokenize(text)
y = []
for i in text:
if i.isalnum():
y.append(i)
text = y[:]
y.clear()
for i in text:
if i not in stopwords.words('english') and i not in string.punctuation:
y.append(i)
text = y[:]
y.clear()
for i in text:
y.append(ps.stem(i))
return " ".join(y)
def plot_dataset_insights(df):
plt.figure(figsize=(15, 5))
plt.subplot(131)
sns.histplot(data=df, x='num_characters', hue='target', bins=50)
plt.title('Message Length Distribution')
plt.subplot(132)
df['target'].value_counts().plot(kind='bar')
plt.title('Class Distribution')
plt.subplot(133)
sns.boxplot(data=df, x='target', y='num_words')
plt.title('Word Count by Class')
plt.tight_layout()
plt.savefig('./graphs/dataset_insights.png')
plt.close()
def plot_word_clouds(df):
from wordcloud import WordCloud
plt.figure(figsize=(15, 5))
# Map text labels to numeric
df['target_num'] = df['target'].map({'ham': 0, 'spam': 1})
for idx, label in enumerate(['ham', 'spam']):
# Get text for current label
text = ' '.join(df[df['target'] == label]['transformed_text'])
if not text.strip():
logger.warning(f"No text found for label: {label}")
continue
try:
wordcloud = WordCloud(width=800, height=400).generate(text)
plt.subplot(1, 2, idx+1)
plt.imshow(wordcloud)
plt.axis('off')
plt.title(f'Word Cloud - {label.upper()}')
except Exception as e:
logger.error(f"Error generating wordcloud for {label}: {e}")
plt.savefig('./graphs/wordclouds.png')
plt.close()
def plot_performance_metrics(y_test, y_pred, model):
plt.figure(figsize=(15, 5))
plt.subplot(131)
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.title('Confusion Matrix')
plt.subplot(132)
performance_df = pd.DataFrame({
'Metric': ['Accuracy', 'Precision'],
'Score': [accuracy_score(y_test, y_pred), precision_score(y_test, y_pred)]
})
sns.barplot(x='Metric', y='Score', data=performance_df)
plt.title('Model Performance')
plt.subplot(133)
etc = model.named_estimators_['et']
importances = pd.Series(etc.feature_importances_)
importances.nlargest(10).plot(kind='bar')
plt.title('Top 10 Important Features')
plt.tight_layout()
plt.savefig('./graphs/performance_metrics.png')
plt.close()
def save_metrics(metrics):
with open('./models/metrics.txt', 'w') as f:
for metric, value in metrics.items():
f.write(f"{metric}: {value:.4f}\n")
def main():
try:
# Load and preprocess data
logger.info("Loading data...")
df = pd.read_csv('./data/spam.csv', encoding='latin-1')
df = df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1)
df = df.rename(columns={'v1': 'target', 'v2': 'text'})
logger.info(f"Target value counts:\n{df['target'].value_counts()}")
# Add numerical features
df['num_characters'] = df['text'].apply(len)
df['num_words'] = df['text'].apply(lambda x: len(nltk.word_tokenize(x)))
df['num_sentences'] = df['text'].apply(lambda x: len(nltk.sent_tokenize(x)))
logger.info("Transforming text...")
df['transformed_text'] = df['text'].apply(transform_text)
# Verify transformed text
logger.info(f"Sample transformed text:\n{df['transformed_text'].head()}")
logger.info("Generating visualizations...")
plot_dataset_insights(df)
plot_word_clouds(df)
# Text vectorization
tfidf = TfidfVectorizer(max_features=3000)
X = tfidf.fit_transform(df['transformed_text']).toarray()
# Convert target to numeric for model
y = (df['target'] == 'spam').astype(int)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2)
# Create ensemble
logger.info("Training model...")
svc = SVC(kernel='sigmoid', gamma=1.0, probability=True)
mnb = MultinomialNB()
etc = ExtraTreesClassifier(n_estimators=50, random_state=2)
voting = VotingClassifier([('svm', svc), ('nb', mnb), ('et', etc)], voting='soft')
voting.fit(X_train, y_train)
y_pred = voting.predict(X_test)
metrics = {
"Accuracy": accuracy_score(y_test, y_pred),
"Precision": precision_score(y_test, y_pred)
}
save_metrics(metrics)
for metric, value in metrics.items():
logger.info(f"{metric}: {value:.4f}")
plot_performance_metrics(y_test, y_pred, voting)
logger.info("Saving models...")
pickle.dump(tfidf, open('./models/vectorizer.pkl', 'wb'))
pickle.dump(voting, open('./models/model.pkl', 'wb'))
logger.info("Training completed successfully")
except Exception as e:
logger.error(f"An error occurred: {e}")
raise
if __name__ == "__main__":
try:
nltk.download('punkt')
nltk.download('stopwords')
main()
except Exception as e:
print(f"Fatal error: {e}") |