Delete models.md
Browse files
models.md
DELETED
@@ -1,37 +0,0 @@
|
|
1 |
-
# Comparison of Training Models
|
2 |
-
|
3 |
-
1. **Lite Model**
|
4 |
-
- Uses basic ensemble voting with fixed weights [2,1,2]
|
5 |
-
- Pre-configured hyperparameters (no optimization)
|
6 |
-
- Lemmatization for text preprocessing
|
7 |
-
- Uses 3 algorithms: SVC, MultinomialNB, ExtraTreesClassifier
|
8 |
-
- Fastest because no parameter tuning/optimization
|
9 |
-
|
10 |
-
2. **Legacy Model**
|
11 |
-
- Uses simple voting ensemble without weight optimization
|
12 |
-
- Porter Stemming for text preprocessing (simpler than lemmatization)
|
13 |
-
- Slightly different hyperparameters:
|
14 |
-
- SVC with 'sigmoid' kernel
|
15 |
-
- Fewer trees in ExtraTreesClassifier (50 vs 200)
|
16 |
-
- Medium speed due to simpler preprocessing
|
17 |
-
|
18 |
-
3. **Monarch Butterfly Optimization (MBO) Model**
|
19 |
-
- Uses nature-inspired optimization algorithm
|
20 |
-
- Optimizes 7 parameters simultaneously:
|
21 |
-
- SVC parameters (C, gamma)
|
22 |
-
- MultinomialNB alpha
|
23 |
-
- Number of trees
|
24 |
-
- Ensemble weights (w1, w2, w3)
|
25 |
-
- Population-based search with:
|
26 |
-
- 20 butterflies
|
27 |
-
- 30 iterations
|
28 |
-
- Cross-validation for each evaluation
|
29 |
-
- Slowest because:
|
30 |
-
- Runs multiple training cycles (20 butterflies × 30 iterations)
|
31 |
-
- Each evaluation requires 5-fold cross-validation
|
32 |
-
- Total of ~3000 model evaluations
|
33 |
-
|
34 |
-
**Summary**:
|
35 |
-
- Lite: Quick, fixed parameters
|
36 |
-
- Legacy: Traditional, basic ensemble
|
37 |
-
- MBO: Advanced optimization, but computationally intensive
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|