import numpy as np import pandas as pd import nltk, string, logging, pickle import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, confusion_matrix, precision_score from sklearn.ensemble import VotingClassifier from sklearn.svm import SVC from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import ExtraTreesClassifier # Setup logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) def transform_text(text): ps = PorterStemmer() text = text.lower() text = nltk.word_tokenize(text) y = [] for i in text: if i.isalnum(): y.append(i) text = y[:] y.clear() for i in text: if i not in stopwords.words('english') and i not in string.punctuation: y.append(i) text = y[:] y.clear() for i in text: y.append(ps.stem(i)) return " ".join(y) def plot_dataset_insights(df): plt.figure(figsize=(15, 5)) plt.subplot(131) sns.histplot(data=df, x='num_characters', hue='target', bins=50) plt.title('Message Length Distribution') plt.subplot(132) df['target'].value_counts().plot(kind='bar') plt.title('Class Distribution') plt.subplot(133) sns.boxplot(data=df, x='target', y='num_words') plt.title('Word Count by Class') plt.tight_layout() plt.savefig('./graphs/dataset_insights.png') plt.close() def plot_word_clouds(df): from wordcloud import WordCloud plt.figure(figsize=(15, 5)) # Map text labels to numeric df['target_num'] = df['target'].map({'ham': 0, 'spam': 1}) for idx, label in enumerate(['ham', 'spam']): # Get text for current label text = ' '.join(df[df['target'] == label]['transformed_text']) if not text.strip(): logger.warning(f"No text found for label: {label}") continue try: wordcloud = WordCloud(width=800, height=400).generate(text) plt.subplot(1, 2, idx+1) plt.imshow(wordcloud) plt.axis('off') plt.title(f'Word Cloud - {label.upper()}') except Exception as e: logger.error(f"Error generating wordcloud for {label}: {e}") plt.savefig('./graphs/wordclouds.png') plt.close() def plot_performance_metrics(y_test, y_pred, model): plt.figure(figsize=(15, 5)) plt.subplot(131) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot=True, fmt='d', cmap='Blues') plt.title('Confusion Matrix') plt.subplot(132) performance_df = pd.DataFrame({ 'Metric': ['Accuracy', 'Precision'], 'Score': [accuracy_score(y_test, y_pred), precision_score(y_test, y_pred)] }) sns.barplot(x='Metric', y='Score', data=performance_df) plt.title('Model Performance') plt.subplot(133) etc = model.named_estimators_['et'] importances = pd.Series(etc.feature_importances_) importances.nlargest(10).plot(kind='bar') plt.title('Top 10 Important Features') plt.tight_layout() plt.savefig('./graphs/performance_metrics.png') plt.close() def save_metrics(metrics): with open('./models/metrics.txt', 'w') as f: for metric, value in metrics.items(): f.write(f"{metric}: {value:.4f}\n") def main(): try: # Load and preprocess data logger.info("Loading data...") df = pd.read_csv('./data/spam.csv', encoding='latin-1') df = df.drop(['Unnamed: 2', 'Unnamed: 3', 'Unnamed: 4'], axis=1) df = df.rename(columns={'v1': 'target', 'v2': 'text'}) logger.info(f"Target value counts:\n{df['target'].value_counts()}") # Add numerical features df['num_characters'] = df['text'].apply(len) df['num_words'] = df['text'].apply(lambda x: len(nltk.word_tokenize(x))) df['num_sentences'] = df['text'].apply(lambda x: len(nltk.sent_tokenize(x))) logger.info("Transforming text...") df['transformed_text'] = df['text'].apply(transform_text) # Verify transformed text logger.info(f"Sample transformed text:\n{df['transformed_text'].head()}") logger.info("Generating visualizations...") plot_dataset_insights(df) plot_word_clouds(df) # Text vectorization tfidf = TfidfVectorizer(max_features=3000) X = tfidf.fit_transform(df['transformed_text']).toarray() # Convert target to numeric for model y = (df['target'] == 'spam').astype(int) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=2) # Create ensemble logger.info("Training model...") svc = SVC(kernel='sigmoid', gamma=1.0, probability=True) mnb = MultinomialNB() etc = ExtraTreesClassifier(n_estimators=50, random_state=2) voting = VotingClassifier([('svm', svc), ('nb', mnb), ('et', etc)], voting='soft') voting.fit(X_train, y_train) y_pred = voting.predict(X_test) metrics = { "Accuracy": accuracy_score(y_test, y_pred), "Precision": precision_score(y_test, y_pred) } save_metrics(metrics) for metric, value in metrics.items(): logger.info(f"{metric}: {value:.4f}") plot_performance_metrics(y_test, y_pred, voting) logger.info("Saving models...") pickle.dump(tfidf, open('./models/vectorizer.pkl', 'wb')) pickle.dump(voting, open('./models/model.pkl', 'wb')) logger.info("Training completed successfully") except Exception as e: logger.error(f"An error occurred: {e}") raise if __name__ == "__main__": try: nltk.download('punkt') nltk.download('stopwords') main() except Exception as e: print(f"Fatal error: {e}")