File size: 1,657 Bytes
7201a3f
 
 
0ac437e
 
 
 
 
 
 
7201a3f
 
0ac437e
 
7201a3f
fa366a2
3b0d3ae
 
 
 
8e96920
3b0d3ae
 
0ac437e
3b0d3ae
3e8ba06
8e96920
3e8ba06
3b0d3ae
3e8ba06
a61f395
25858a9
3b0d3ae
a61f395
25858a9
 
 
13414e8
3b0d3ae
a61f395
 
 
 
4b4682a
a61f395
3e8ba06
3b0d3ae
 
8e96920
3b0d3ae
8e96920
3b0d3ae
8e96920
 
 
3b0d3ae
8e96920
 
 
dc72769
 
 
8e96920
dc72769
1b117f6
4b4682a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
pipeline_tag: object-detection
tags:
- ultralytics
- yolo
- yolov8
- tracking
- image-classification
- obb
- object-detection
language:
- hy
datasets:
- armvectores/handwritten_text_detection
---
# YOLOv8 Handwritten Text Detection


## Model Description

YOLOv8 is the eighth version of the You Only Look Once (YOLO) object detection algorithm. It excels in speed and accuracy, making it an ideal choice for real-time applications. The YOLOv8 model provided here has been fine-tuned on a diverse dataset of handwritten texts to improve its specificity in detecting handwritten content as opposed to typed or printed materials.


## How to use

```
pip install ultralytics
```

```
from ultralytics import YOLO
from huggingface_hub import hf_hub_download

# Load the weights from our repository
model_path = hf_hub_download(local_dir=".",
                             repo_id="armvectores/yolov5_handwritten_text_detection",
                             filename="best.pt")
model = YOLO(model_path)

# Load test blank
test_blank_path = hf_hub_download(local_dir=".",
                             repo_id="armvectores/yolov5_handwritten_text_detection",
                             filename="test_blank.png")
# Do the predictions
model.predict(source=test_blank, save=True, show=True, show_labels=False, show_conf=False, conf=0.3)
```


## Tests

Here the examples of model work:

<p align="center">
 <img width="400px" src="prediction1.png" alt="qr"/>
</p>

<p align="center">
 <img width="400px" src="prediction2.png" alt="qr"/>
</p>

## Metrics

There is some metrics of trained model.
<p align="center">
 <img src="results.png" width="200" />
</p>