# Tiny-LLM A Tiny LLM model with just 10 Million parameters, this is probably one of the small LLM arounds, and it is functional. ## Pretraining Tiny-LLM was trained on 32B tokens of the Fineweb dataset, with a context length of 1024 tokens. ## Getting Started To start using these models, you can simply load them via the Hugging Face `transformers` library: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_NAME = "arnir0/Tiny-LLM" tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) def generate_text(prompt, model, tokenizer, max_length=512, temperature=1, top_k=50, top_p=0.95): inputs = tokenizer.encode(prompt, return_tensors="pt") outputs = model.generate( inputs, max_length=max_length, temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True ) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) return generated_text def main(): # Define your prompt prompt = "According to all known laws of aviation, there is no way a bee should be able to fly." generated_text = generate_text(prompt, model, tokenizer) print(generated_text) if __name__ == "__main__": main() ```