File size: 133,512 Bytes
2e9b585 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 |
"""
2025.7.4
2025.7.3
4.53.2
0.19.1
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.grpo_trainer import (Any, AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, DataLoader, Dataset, FSDP, GRPOConfig, GRPOTrainer, GenerationConfig, IterableDataset, Optional, Path, PeftConfig, PreTrainedModel, PreTrainedTokenizerBase, RepeatSampler, RewardFunc, Sampler, SyncRefModelCallback, Trainer, TrainerCallback, Union, VLLMClient, _ForwardRedirection, apply_chat_template, broadcast_object_list, datasets, defaultdict, deque, disable_dropout_in_model, gather, gather_object, generate_model_card, get_comet_experiment_url, identity, is_conversational, is_datasets_available, is_liger_kernel_available, is_peft_available, is_peft_model, is_rich_available, is_vllm_available, is_wandb_available, maybe_apply_chat_template, nanmax, nanmin, nanstd, nn, nullcontext, os, pad, partial, prepare_deepspeed, prepare_fsdp, print_prompt_completions_sample, profiling_context, profiling_decorator, re, seed_worker, set_seed, shuffle_tensor_dict, split_tensor_dict, textwrap, torch, transformers, unwrap_model_for_generation, version, wandb, warnings, Any, FSDP, Union, apply_chat_template, broadcast_object_list, gather, gather_object, is_conversational, maybe_apply_chat_template, nanstd, nullcontext, os, pad, profiling_context, re, torch, unwrap_model_for_generation, os, re, torch, transformers, re, Any, Union, os, profiling_decorator, re, shuffle_tensor_dict, split_tensor_dict, torch, Optional, PreTrainedModel, Trainer, is_peft_available, os, re, torch, FSDP, nn, os, re, GRPOTrainer, Trainer, gather, os, re, torch)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
logits = logits.to(torch.float32)
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
logsumexp_values = torch.logsumexp(logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
return per_token_logps
def grpo_compute_loss(
ref_logits,
new_logits,
old_logits,
input_ids,
mask,
beta,
advantages,
**kwargs
):
# All Unsloth Zoo code licensed under LGPLv3
# Set defaults for optional arguments
loss_type = kwargs.get("loss_type", "grpo")
epsilon_low = kwargs.get("epsilon_low", 0.2)
epsilon_high = kwargs.get("epsilon_high", 0.2)
max_completion_length = kwargs.get("max_completion_length", 8192)
delta = kwargs.get("delta", None)
temperature = kwargs.get("temperature", 1.0)
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0)
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0)
logit_softcapping = kwargs.get("logit_softcapping", 0.0)
input_ids = input_ids.unsqueeze(-1)
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping)
new_logits = new_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: new_logits = new_logits / temperature
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
new = new_x - torch.logsumexp(new_logits, dim = -1)
# x_i - logsumexp(x_i)
with torch.no_grad():
if beta != 0.0:
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0"
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping)
ref_logits = ref_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: ref_logits = ref_logits / temperature
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1)
ref = ref_x - torch.logsumexp(ref_logits, dim = -1)
pass
if old_logits is not None:
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping)
old_logits = old_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: old_logits = old_logits / temperature
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
old = old_x - torch.logsumexp(old_logits, dim = -1)
pass
pass
# Reverse KL
# Note that this is a low variance low bias estimator for the KL divergence as used in GRPO paper
if beta != 0.0:
kl_i = torch.exp(ref - new) - (ref - new) - 1.0
else:
kl_i = 0.0 # set it to 0 to not effect the downstream computation
# Full correct reverse KL divergence?? Missing term maybe?
# kl_i = torch.exp(new) * kl_i
# Below is forward KL (normal KL)
# kl_i = torch.exp(old) * (old - new)
if old_logits is not None:
coef_1 = torch.exp(new - old)
else:
coef_1 = torch.exp(new - new.detach())
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high)
if delta is not None:
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1)
else:
loss_1 = coef_1 * advantages.unsqueeze(1)
pass
# Must detach - otherwise gradients are not propagated correctly!
# exp(x - x) == 1
# loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
loss_2 = coef_2 * advantages.unsqueeze(1)
loss_i = -torch.min(loss_1, loss_2)
if beta != 0.0:
loss_i = loss_i + beta * kl_i
mask = mask.to(torch.float32)
n_mask_per_reward = mask.sum(1)
# https://github.com/huggingface/trl/blob/main/trl/trainer/grpo_trainer.py#L1363-L1370
if loss_type == "grpo":
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean()
elif loss_type == "bnpo":
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0)
elif loss_type == "dr_grpo":
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length)
else:
raise ValueError(f"Unknown loss type: {loss_type}")
# loss = (loss_i * mask).sum() / mask.sum()
# Get metrics as well which are folded
with torch.inference_mode():
completion_length = n_mask_per_reward.mean()
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward
mean_kl = mean_kl_per_reward.mean()
pass
return loss, completion_length, mean_kl
class UnslothEfficientGRPO(torch.autograd.Function):
# All Unsloth Zoo code licensed under LGPLv3
@staticmethod
def forward(ctx, _new_hidden_states, _old_hidden_states, _ref_hidden_states, lm_head, _input_ids, _mask, _advantages, beta, scaler = None, n_chunks = 1, extra_kwargs=None):
if extra_kwargs is None:
extra_kwargs = {}
def compute_loss(new_hidden_states, old_hidden_states, ref_hidden_states, input_ids, mask, advantages, scaling):
new_logits = torch.matmul(new_hidden_states, lm_head.t())
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
with torch.no_grad():
if beta != 0.0:
ref_logits = torch.matmul(ref_hidden_states, lm_head.t())
ref_logits = ref_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
else:
ref_logits = None
if old_hidden_states is not None:
old_logits = torch.matmul(old_hidden_states, lm_head.t())
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
else:
old_logits = None
# if old_hidden_states is not None:
# old_logits = torch.matmul(old_hidden_states, lm_head.t()) #last logit already excluded
# old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
# else:
# old_logits = None
# unsloth_zoo/rl_replacements.py
loss, completion_length, mean_kl = grpo_compute_loss(
ref_logits,
new_logits,
old_logits,
input_ids,
mask,
beta,
advantages,
**extra_kwargs,
)
# Scale loss if needed for mixed precision training
scaled_loss = loss * scaling
# Must add .loss.detach otherwise autograd uses 2x VRAM
return scaled_loss, (loss.detach(), completion_length, mean_kl,)
pass
device =_new_hidden_states.device
grad_inputs = torch.empty_like(_new_hidden_states)
accumulated_loss = torch.zeros(1, device = device)
accumulated_completion_length = torch.zeros(1, device = device)
accumulated_mean_kl = torch.zeros(1, device = device)
def accumulate_chunk(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling):
(chunk_grad_input,), (chunk_loss, (unscaled_loss, chunk_completion_length, chunk_mean_kl,)) = torch.func.grad_and_value(
compute_loss,
argnums = (0,),
has_aux = True,
)(new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling)
accumulated_loss .add_(unscaled_loss)
accumulated_completion_length.add_(chunk_completion_length)
accumulated_mean_kl .add_(chunk_mean_kl)
return chunk_grad_input
pass
accumulate_chunk = torch.compile(
accumulate_chunk,
fullgraph = True,
options = torch_compile_options,
)
grad_inputs_chunks = torch.chunk(grad_inputs, chunks = n_chunks, dim = 0)
new_hidden_states = torch.chunk(_new_hidden_states, chunks = n_chunks, dim = 0)
if _old_hidden_states is not None:
old_hidden_states = torch.chunk(_old_hidden_states, chunks = n_chunks, dim = 0)
else:
old_hidden_states = [None] * n_chunks
ref_hidden_states = torch.chunk(_ref_hidden_states, chunks = n_chunks, dim = 0)
input_ids = torch.chunk(_input_ids, chunks = n_chunks, dim = 0)
mask = torch.chunk(_mask, chunks = n_chunks, dim = 0)
advantages = torch.chunk(_advantages, chunks = n_chunks, dim = 0)
# Get mixed precision scaling if seen
scaling = scaler.get_scale() if scaler is not None else 1.0
# Force torch.compile to use dynamic shapes for seqlen dim
mark_dynamic = lambda x: torch._dynamo.mark_dynamic(x, 1)
for (grad_inputs_j, new_hidden_states_j, old_hidden_states_j, ref_hidden_states_j, input_ids_j, mask_j, advantages_j,) in \
zip(grad_inputs_chunks, new_hidden_states, old_hidden_states, ref_hidden_states, input_ids, mask, advantages):
mark_dynamic(new_hidden_states_j)
mark_dynamic(ref_hidden_states_j)
if old_hidden_states_j is not None:
mark_dynamic(old_hidden_states_j)
mark_dynamic(input_ids_j)
mark_dynamic(mask_j)
grad_inputs_j.copy_(accumulate_chunk(new_hidden_states_j, old_hidden_states_j,ref_hidden_states_j, input_ids_j, mask_j, advantages_j, scaling))
pass
grad_inputs .div_(n_chunks)
accumulated_loss .div_(n_chunks)
accumulated_completion_length.div_(n_chunks)
accumulated_mean_kl .div_(n_chunks)
ctx.save_for_backward(grad_inputs)
return (
accumulated_loss,
accumulated_completion_length,
accumulated_mean_kl,
)
pass
@staticmethod
def backward(ctx, grad_output, dcompletion_length, dmean_kl):
(grad_input,) = ctx.saved_tensors
return (grad_input, None, None, None, None, None, None, None, None, None, None)
pass
def grpo_accumulated_loss(
trainer,
input_ids,
attention_mask,
logits_to_keep,
completion_mask,
advantages,
old_hidden_states,
n_chunks = -1,
**kwargs,
):
# All Unsloth Zoo code licensed under LGPLv3
bsz, qlen = input_ids.shape
# Find closest multiple
factors = [i for i in range(1, bsz + 1) if bsz % i == 0]
if n_chunks == -1: n_chunks = bsz
n_chunks = factors[min(np.searchsorted(factors, n_chunks), len(factors)-1)]
if not hasattr(trainer, '_autocast_dtype'):
trainer._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': trainer._autocast_dtype = torch.float16
pass
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1"
completion_input_ids = input_ids[:, -logits_to_keep:]
lm_head = trainer.model.get_output_embeddings().weight
with torch.amp.autocast(device_type = trainer.model.device.type, dtype = trainer._autocast_dtype):
with torch.inference_mode(), trainer.accelerator.unwrap_model(trainer.model, keep_fp32_wrapper = False).disable_adapter():
ref_hidden_states = trainer.model(
input_ids = input_ids,
attention_mask = attention_mask,
logits_to_keep = logits_to_keep + 1,
).logits
pass
new_hidden_states = trainer.model(
input_ids = input_ids,
attention_mask = attention_mask,
logits_to_keep = logits_to_keep + 1,
).logits
loss, completion_length, mean_kl = UnslothEfficientGRPO.apply(
new_hidden_states,
old_hidden_states,
ref_hidden_states,
lm_head,
completion_input_ids,
completion_mask,
advantages,
trainer.beta,
trainer.accelerator.scaler,
n_chunks,
kwargs # pass kwargs as a dict
)
pass
# Must force not returning hidden states but logits otherwise gibberish
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "0"
return loss, completion_length, mean_kl
# Old non efficient code path
new_logits = torch.matmul(new_hidden_states, lm_head.t())
new_logits = new_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
old_logits = torch.matmul(old_hidden_states, lm_head.t())
old_logits = old_logits[:, :-1, :] # exclude the last logit: it corresponds to the next token pred
loss, completion_length, mean_kl = grpo_compute_loss(
old_logits,
new_logits,
completion_input_ids,
completion_mask,
trainer.beta,
advantages,
)
return loss, completion_length, mean_kl
pass
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options)
def grpo_compute_loss_slow(
ref_logits,
new_logits,
old_logits,
input_ids,
mask,
beta,
advantages,
**kwargs
):
# All Unsloth Zoo code licensed under LGPLv3
# Set defaults for optional arguments
loss_type = kwargs.get("loss_type", "grpo")
epsilon_low = kwargs.get("epsilon_low", 0.2)
epsilon_high = kwargs.get("epsilon_high", 0.2)
max_completion_length = kwargs.get("max_completion_length", 8192)
delta = kwargs.get("delta", None)
temperature = kwargs.get("temperature", 1.0)
logit_scale_multiply = kwargs.get("logit_scale_multiply", 0.0)
logit_scale_divide = kwargs.get("logit_scale_divide", 0.0)
logit_softcapping = kwargs.get("logit_softcapping", 0.0)
input_ids = input_ids.unsqueeze(-1)
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: new_logits = new_logits * logit_scale_multiply
if logit_scale_divide != 0: new_logits = new_logits / logit_scale_divide
if logit_softcapping != 0: new_logits = new_logits * torch.tanh(new_logits / logit_softcapping)
new_logits = new_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: new_logits = new_logits / temperature
new_x = torch.gather(new_logits, dim = -1, index = input_ids).squeeze(-1)
new = new_x - torch.logsumexp(new_logits, dim = -1)
# x_i - logsumexp(x_i)
with torch.no_grad():
if beta != 0.0:
assert ref_logits is not None, "ref_logits should not be None when beta != 0.0"
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: ref_logits = ref_logits * logit_scale_multiply
if logit_scale_divide != 0: ref_logits = ref_logits / logit_scale_divide
if logit_softcapping != 0: ref_logits = ref_logits * torch.tanh(ref_logits / logit_softcapping)
ref_logits = ref_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: ref_logits = ref_logits / temperature
ref_x = torch.gather(ref_logits, dim = -1, index = input_ids).squeeze(-1)
ref = ref_x - torch.logsumexp(ref_logits, dim = -1)
pass
if old_logits is not None:
# Optional logit softcapping and logit dividing
if logit_scale_multiply != 0: old_logits = old_logits * logit_scale_multiply
if logit_scale_divide != 0: old_logits = old_logits / logit_scale_divide
if logit_softcapping != 0: old_logits = old_logits * torch.tanh(old_logits / logit_softcapping)
old_logits = old_logits.to(torch.float32)
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
if temperature != 1.0: old_logits = old_logits / temperature
old_x = torch.gather(old_logits, dim = -1, index = input_ids).squeeze(-1)
old = old_x - torch.logsumexp(old_logits, dim = -1)
pass
pass
# Reverse KL
# Note that this is a low variance low bias estimator for the KL divergence as used in GRPO paper
if beta != 0.0:
kl_i = torch.exp(ref - new) - (ref - new) - 1.0
else:
kl_i = 0.0 # set it to 0 to not effect the downstream computation
# Full correct reverse KL divergence?? Missing term maybe?
# kl_i = torch.exp(new) * kl_i
# Below is forward KL (normal KL)
# kl_i = torch.exp(old) * (old - new)
if old_logits is not None:
coef_1 = torch.exp(new - old)
else:
coef_1 = torch.exp(new - new.detach())
coef_2 = torch.clamp(coef_1, 1 - epsilon_low, 1 + epsilon_high)
if delta is not None:
loss_1 = torch.clamp(coef_1, max=delta) * advantages.unsqueeze(1)
else:
loss_1 = coef_1 * advantages.unsqueeze(1)
pass
# Must detach - otherwise gradients are not propagated correctly!
# exp(x - x) == 1
# loss_i = torch.exp(new - new.detach()) * advantages.unsqueeze(1)
loss_2 = coef_2 * advantages.unsqueeze(1)
loss_i = -torch.min(loss_1, loss_2)
if beta != 0.0:
loss_i = loss_i + beta * kl_i
mask = mask.to(torch.float32)
n_mask_per_reward = mask.sum(1)
# https://github.com/huggingface/trl/blob/main/trl/trainer/grpo_trainer.py#L1363-L1370
if loss_type == "grpo":
loss = ((loss_i * mask).sum(-1) / mask.sum(-1).clamp(min=1.0)).mean()
elif loss_type == "bnpo":
loss = (loss_i * mask).sum() / mask.sum().clamp(min=1.0)
elif loss_type == "dr_grpo":
loss = (loss_i * mask).sum() / (loss_i.size(0) * max_completion_length)
else:
raise ValueError(f"Unknown loss type: {loss_type}")
# loss = (loss_i * mask).sum() / mask.sum()
# Get metrics as well which are folded
with torch.inference_mode():
completion_length = n_mask_per_reward.mean()
mean_kl_per_reward = (kl_i * mask).sum(1) / n_mask_per_reward
mean_kl = mean_kl_per_reward.mean()
pass
return loss, completion_length, mean_kl
def vLLMSamplingParams(**kwargs):
from vllm import SamplingParams
sampling_params = SamplingParams(**kwargs)
sampling_params._set_kwargs = kwargs
return sampling_params
@dataclass
class UnslothGRPOConfig(GRPOConfig):
"""
Configuration class for the [`GRPOTrainer`].
This class includes only the parameters that are specific to GRPO training. For a full list of training arguments,
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may
differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model and reference model
model_init_kwargs (`str`, `dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`GRPOTrainer`] is provided as a string.
disable_dropout (`bool`, *optional*, defaults to `False`):
Whether to disable dropout in the model. This is useful for training with a reference model, as it prevents
the model from generating different logprobs for the same input.
> Parameters that control the data preprocessing
remove_unused_columns (`bool`, *optional*, defaults to `False`):
Whether to only keep the column `"prompt"` in the dataset. If you use a custom reward function that
requires any column other than `"prompts"` and `"completions"`, you should keep this to `False`.
max_prompt_length (`int` or `None`, *optional*, defaults to `512`):
Maximum length of the prompt. If the prompt is longer than this value, it will be truncated left.
num_generations (`int` or `None`, *optional*, defaults to `8`):
Number of generations per prompt to sample. The effective batch size (num_processes * per_device_batch_size
* gradient_accumulation_steps) must be evenly divisible by this value.
max_completion_length (`int` or `None`, *optional*, defaults to `256`):
Maximum length of the generated completion.
ds3_gather_for_generation (`bool`, *optional*, defaults to `True`):
This setting applies to DeepSpeed ZeRO-3. If enabled, the policy model weights are gathered for generation,
improving generation speed. However, disabling this option allows training models that exceed the VRAM
capacity of a single GPU, albeit at the cost of slower generation. Disabling this option is not compatible
with vLLM generation.
shuffle_dataset (`bool`, *optional*, defaults to `True`):
Whether to shuffle the training dataset.
> Parameters that control generation
generation_batch_size: (`int` or `None`, *optional*, defaults to `None`):
Batch size to use for generation. If `None`, it defaults to the effective training batch size:
`per_device_train_batch_size * num_processes * gradient_accumulation_steps`.
steps_per_generations: (`int` or `None`, *optional*, defaults to `None`):
Number of optimization steps per generation. If `None`, it defaults to gradient_accumulation_steps.
temperature (`float`, defaults to `1.0`):
Temperature for sampling. The higher the temperature, the more random the completions.
top_p (`float`, *optional*, defaults to `1.0`):
Float that controls the cumulative probability of the top tokens to consider. Must be in (0, 1]. Set to
`1.0` to consider all tokens.
top_k (`int` or `None`, *optional*, defaults to `None`):
Number of highest probability vocabulary tokens to keep for top-k-filtering. If `None`, top-k-filtering is
disabled and all tokens are considered.
min_p (`float` or `None`, *optional*, defaults to `None`):
Minimum token probability, which will be scaled by the probability of the most likely token. It must be a
value between `0.0` and `1.0`. Typical values are in the `0.01-0.2` range.
repetition_penalty (`float`, *optional*, defaults to `1.0`):
Float that penalizes new tokens based on whether they appear in the prompt and the generated text so far.
Values > `1.0` encourage the model to use new tokens, while values < `1.0` encourage the model to repeat
tokens.
cache_implementation (`str` or `None`, *optional*, defaults to `None`):
Implementation of the cache method for faster generation when use_vllm is set to False.
generation_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Additional keyword arguments to pass to `GenerationConfig` (if using transformers) or `SamplingParams` (if
using vLLM) when sampling completions. This can be used to further customize the generation behavior, such
as setting `supress_tokens`, `num_beams`, etc. If it contains keys that conflict with the other generation
parameters (like `min_p`, `top_p`, etc.), they will override them.
> Parameters that control generation acceleration powered by vLLM
use_vllm (`bool`, *optional*, defaults to `False`):
Whether to use vLLM for generating completions. If set to `True`, the trainer will use vLLM for generation
instead of the default model.generate(). Requires `vllm` to be installed.
vllm_mode (`str`, *optional*, defaults to `"server"`):
Mode to use for vLLM integration when `use_vllm` is set to `True`. Must be one of `"server"` or
`"colocate"`.
- `"server"`: The trainer will send generation requests to a separate vLLM server. Make sure a TRL vLLM
server is running (start with `trl vllm-serve`).
- `"colocate"`: vLLM will run in the same process and share the training GPUs. This avoids the need for a
separate server but may cause resource contention with training.
vllm_guided_decoding_regex (`str` or `None`, *optional*, defaults to `None`):
Regex for vLLM guided decoding. If `None` (default), guided decoding is disabled.
> Parameters that control the vLLM server (only used when `vllm_mode` is `"server"`)
vllm_server_base_url (`str` or `None`, *optional*, defaults to `None`):
Base URL for the vLLM server (e.g., `"http://localhost:8000"`). If provided, `vllm_server_host` and
`vllm_server_port` are ignored.
vllm_server_host (`str`, *optional*, defaults to `"0.0.0.0"`):
Host of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
vllm_server_port (`int`, *optional*, defaults to `8000`):
Port of the vLLM server to connect to. Ignored if `vllm_server_base_url` is provided.
vllm_server_timeout (`float`, *optional*, defaults to `240.0`):
Total timeout duration in seconds to wait for the vLLM server to be up. If the server is not up after the
timeout, a `ConnectionError` is raised.
> Parameters that control colocated vLLM execution (only used when `vllm_mode` is `"colocate"`)
vllm_gpu_memory_utilization (`float`, *optional*, defaults to `0.3`):
Control the GPU memory utilization for vLLM. This setting only applies when `vllm_mode` is set to
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
launching the vLLM server via the `--vllm_gpu_memory_utilization` flag.
vllm_tensor_parallel_size (`int`, *optional*, defaults to `1`):
Control the tensor parallel size for vLLM. This setting only applies when `vllm_mode` is set to
`"colocate"`. If you are using `vllm_mode="server"`, this parameter must be passed separately when
launching the vLLM server via the `--vllm_tensor_parallel_size` flag.
> Parameters that control the training
beta (`float`, *optional*, defaults to `0.0`):
KL coefficient. If `0.0` (default), the reference model is not loaded, reducing memory usage and improving
training speed.
num_iterations (`int`, *optional*, defaults to `1`):
Number of iterations per batch (denoted as μ in the algorithm).
epsilon (`float`, *optional*, defaults to `0.2`):
Epsilon value for clipping.
delta: (`float` or `None`, *optional*, defaults to `None`):
Enables the upper clipping bound in two-sided GRPO loss when set to a float. If `None` (default), standard
GRPO clipping is used. Recommended to be greater than `1 + ε` when enabled. This method is introduced in
the [INTELLECT-2 tech report](https://huggingface.co/papers/2505.07291).
epsilon_high (`float` or `None`, *optional*, defaults to `None`):
Upper-bound epsilon value for clipping. If not specified, it defaults to the same value as the lower-bound
specified in argument `epsilon`. Paper [DAPO](https://huggingface.co/papers/2503.14476) recommends `0.28`.
reward_weights (`list[float]` or `None`, *optional*, defaults to `None`):
Weights for each reward function. Must match the number of reward functions. If `None`, all rewards are
weighted equally with weight `1.0`.
scale_rewards (`bool`, *optional*, defaults to `True`):
Whether to scale the rewards by dividing them by their standard deviation. If `True` (default), the rewards
are normalized by the standard deviation, ensuring they have unit variance. If `False`, no scaling is
applied. The [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) recommends not scaling the rewards,
as scaling by the standard deviation introduces a question-level difficulty bias.
loss_type (`str`, *optional*, defaults to `"bnpo"`):
Specifies the loss formulation to use. Supported values are:
- `"grpo"`: Aggregates token-level losses by normalizing over sequence length. Not recommended due to
length bias—this approach tends to prefer shorter completions with positive advantages and longer ones
with negative advantages.
- `"bnpo"`: Aggregates token-level losses by normalizing number of active token in the local batch.
Note that normalization is performed over the local batch only, so results may slightly vary depending
on the local batch size, despite a constant effective batch size. When using
`per_device_train_batch_size==1`, the loss is equivalent to the GRPO loss.
- `"dr_grpo"`: Aggregates token-level losses by normalizing with a global constant. This method was
introduced in the [Dr. GRPO paper](https://huggingface.co/papers/2503.20783) to eliminate length bias.
The value of the constant corresponds to `max_completion_length`.
mask_truncated_completions (`bool`, *optional*, defaults to `False`):
When enabled, truncated completions are excluded from the loss calculation, preventing them from being
incorrectly penalized and introducing noise during training. According to the
[DAPO](https://huggingface.co/papers/2503.14476) paper, this is a good practice for training stability.
sync_ref_model (`bool`, *optional*, defaults to `False`):
Whether to synchronize the reference model with the active model every `ref_model_sync_steps` steps, using
the `ref_model_mixup_alpha` parameter. This synchronization originates from the
[TR-DPO](https://huggingface.co/papers/2404.09656) paper.
ref_model_mixup_alpha (`float`, *optional*, defaults to `0.6`):
α parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which controls the mix
between the current policy and the previous reference policy during updates. The reference policy is
updated according to the equation: `π_ref = α * π_θ + (1 - α) * π_ref_prev`. To use this parameter, you
must set `sync_ref_model=True`.
ref_model_sync_steps (`int`, *optional*, defaults to `512`):
τ parameter from the [TR-DPO](https://huggingface.co/papers/2404.09656) paper, which determines how
frequently the current policy is synchronized with the reference policy. To use this parameter, you must
set `sync_ref_model=True`.
use_liger_loss (`bool`, *optional*, defaults to `False`):
Whether to use the Liger GRPO loss.
> Parameters that control the logging
log_completions (`bool`, *optional*, defaults to `False`):
Whether to log a sample of (prompt, completion) pairs every `logging_steps` steps. If `rich` is installed,
it prints the sample. If `wandb` logging is enabled, it logs it to `wandb`.
num_completions_to_print (`int` or `None`, *optional*, defaults to `None`):
Number of completions to print with `rich`. If `None`, all completions are logged.
wandb_log_unique_prompts (`bool`, *optional*, defaults to `False`):
Whether to log unique prompts in wandb. If `True`, only unique prompts are logged. If `False`, all prompts
are logged.
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
use_ipex = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = False,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = '',
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
hub_revision = None,
gradient_checkpointing = False,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
liger_kernel_config = None,
eval_use_gather_object = False,
average_tokens_across_devices = False,
model_init_kwargs = None,
disable_dropout = False,
max_prompt_length = 512,
num_generations = 8,
max_completion_length = 256,
ds3_gather_for_generation = True,
shuffle_dataset = True,
generation_batch_size = None,
steps_per_generation = None,
temperature = 1.0,
top_p = 1.0,
top_k = None,
min_p = None,
generation_kwargs = {},
repetition_penalty = 1.0,
cache_implementation = None,
use_vllm = False,
vllm_server_base_url = None,
vllm_mode = 'colocate',
vllm_guided_decoding_regex = None,
vllm_server_host = '0.0.0.0',
vllm_server_port = 8000,
vllm_server_timeout = 240.0,
vllm_gpu_memory_utilization = 0.3,
vllm_tensor_parallel_size = 1,
beta = 0.001,
num_iterations = 1,
epsilon = 0.2,
delta = None,
epsilon_high = None,
reward_weights = None,
scale_rewards = True,
loss_type = 'bnpo',
mask_truncated_completions = False,
sync_ref_model = False,
ref_model_mixup_alpha = 0.6,
ref_model_sync_steps = 512,
use_liger_loss = False,
log_completions = False,
num_completions_to_print = None,
wandb_log_unique_prompts = False,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
**kwargs,
):
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
if loss_type.lower() == 'dr_grpo':
loss_type = 'dr_grpo'
elif loss_type.lower() == 'dapo':
loss_type = 'dapo'
if loss_type.lower() == 'dr_grpo':
if scale_rewards == None:
scale_rewards = True
elif scale_rewards == True:
print('Unsloth: The Dr GRPO paper recommends setting `scale_rewards` to False! Will override. Set it to `None` to force False.')
scale_rewards = False
elif loss_type.lower() == 'dapo':
print('Unsloth: The DAPO paper recommends `mask_truncated_completions = True`')
print('Unsloth: The DAPO paper recommends `epsilon_high = 0.28`')
print('Unsloth: The DAPO paper recommends setting `beta = 0.0` to remove the KL term')
mask_truncated_completions = True
epsilon_high = 0.28
beta = 0.0
loss_type = 'bnpo'
if (per_device_train_batch_size // num_generations) * num_generations != per_device_train_batch_size:
print('Unsloth: We now expect `per_device_train_batch_size` to be a multiple of `num_generations`.\nWe will change the batch size of ' + str(per_device_train_batch_size) + ' to the `num_generations` of ' + str(num_generations))
per_device_train_batch_size = num_generations
if temperature <= 0:
raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.')
elif temperature >= 10:
raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.')
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
use_ipex = use_ipex,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
hub_revision = hub_revision,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
liger_kernel_config = liger_kernel_config,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
model_init_kwargs = model_init_kwargs,
disable_dropout = disable_dropout,
max_prompt_length = max_prompt_length,
num_generations = num_generations,
max_completion_length = max_completion_length,
ds3_gather_for_generation = ds3_gather_for_generation,
shuffle_dataset = shuffle_dataset,
generation_batch_size = generation_batch_size,
steps_per_generation = steps_per_generation,
temperature = temperature,
top_p = top_p,
top_k = top_k,
min_p = min_p,
generation_kwargs = generation_kwargs,
repetition_penalty = repetition_penalty,
cache_implementation = cache_implementation,
use_vllm = use_vllm,
vllm_server_base_url = vllm_server_base_url,
vllm_mode = vllm_mode,
vllm_guided_decoding_regex = vllm_guided_decoding_regex,
vllm_server_host = vllm_server_host,
vllm_server_port = vllm_server_port,
vllm_server_timeout = vllm_server_timeout,
vllm_gpu_memory_utilization = vllm_gpu_memory_utilization,
vllm_tensor_parallel_size = vllm_tensor_parallel_size,
beta = beta,
num_iterations = num_iterations,
epsilon = epsilon,
delta = delta,
epsilon_high = epsilon_high,
reward_weights = reward_weights,
scale_rewards = scale_rewards,
loss_type = loss_type,
mask_truncated_completions = mask_truncated_completions,
sync_ref_model = sync_ref_model,
ref_model_mixup_alpha = ref_model_mixup_alpha,
ref_model_sync_steps = ref_model_sync_steps,
use_liger_loss = use_liger_loss,
log_completions = log_completions,
num_completions_to_print = num_completions_to_print,
wandb_log_unique_prompts = wandb_log_unique_prompts,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
pass
class _UnslothGRPOTrainer(Trainer):
""""""
_tag_names = ["trl", "grpo"]
def __init__(
self,
model: Union[str, PreTrainedModel],
reward_funcs: Union[RewardFunc, list[RewardFunc]],
args: Optional[GRPOConfig] = None,
train_dataset: Optional[Union[Dataset, IterableDataset]] = None,
eval_dataset: Optional[Union[Dataset, IterableDataset, dict[str, Union[Dataset, IterableDataset]]]] = None,
processing_class: Optional[PreTrainedTokenizerBase] = None,
reward_processing_classes: Optional[Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]] = None,
callbacks: Optional[list[TrainerCallback]] = None,
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None),
peft_config: Optional["PeftConfig"] = None,
):
if hasattr(model, 'vllm_engine') and hasattr(args, 'use_vllm'):
if (getattr(args, 'use_vllm', False) == False):
args.use_vllm = True
args.vllm_mode='colocate'
# Args
if args is None:
model_name = model if isinstance(model, str) else model.config._name_or_path
model_name = model_name.split("/")[-1]
args = GRPOConfig(f"{model_name}-GRPO")
# Models
# Trained model
model_init_kwargs = args.model_init_kwargs or {}
if isinstance(model, str):
model_id = model
torch_dtype = model_init_kwargs.get("torch_dtype")
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None:
pass # torch_dtype is already a torch.dtype or "auto" or None
elif isinstance(torch_dtype, str): # it's a str, but not "auto"
torch_dtype = getattr(torch, torch_dtype)
model_init_kwargs["torch_dtype"] = torch_dtype
else:
raise ValueError(
"Invalid `torch_dtype` passed to `GRPOConfig`. Expected either 'auto' or a string representing "
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}."
)
# Disable caching if gradient checkpointing is enabled [not supported]
model_init_kwargs["use_cache"] = (
False if args.gradient_checkpointing else model_init_kwargs.get("use_cache")
)
model = AutoModelForCausalLM.from_pretrained(model, **model_init_kwargs)
else:
model_id = model.config._name_or_path
if args.model_init_kwargs is not None:
raise ValueError(
"You passed `model_init_kwargs` to the `GRPOConfig`, but your model is already instantiated. "
"This argument can only be used when the `model` argument is a string."
)
if False:
if not is_peft_available():
raise ImportError("PEFT is required to use `peft_config`. Run `pip install peft`.")
model = model
# Enable gradient checkpointing if requested
if args.gradient_checkpointing:
model = self._enable_gradient_checkpointing(model, args)
# Processing class
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model.config._name_or_path, padding_side="left")
if processing_class.pad_token is None:
processing_class.pad_token = processing_class.eos_token
# Reward functions
if not isinstance(reward_funcs, list):
reward_funcs = [reward_funcs]
self.reward_func_names = []
for i, reward_func in enumerate(reward_funcs):
if isinstance(reward_func, str):
reward_funcs[i] = AutoModelForSequenceClassification.from_pretrained(
reward_func, num_labels=1, **model_init_kwargs
)
if isinstance(reward_funcs[i], nn.Module): # Use Module over PretrainedModel for compat w/ compiled models
self.reward_func_names.append(reward_funcs[i].config._name_or_path.split("/")[-1])
else:
self.reward_func_names.append(reward_funcs[i].__name__)
self.reward_funcs = reward_funcs
# Reward weights
if args.reward_weights is not None:
if len(args.reward_weights) != len(reward_funcs):
raise ValueError(
f"Number of reward weights ({len(args.reward_weights)}) must match number of reward "
f"functions ({len(reward_funcs)})"
)
self.reward_weights = torch.tensor(args.reward_weights, dtype=torch.float32)
else:
self.reward_weights = torch.ones(len(reward_funcs), dtype=torch.float32)
# Reward processing class
if reward_processing_classes is None:
reward_processing_classes = [None] * len(reward_funcs)
elif not isinstance(reward_processing_classes, list):
reward_processing_classes = [reward_processing_classes]
else:
if len(reward_processing_classes) != len(reward_funcs):
raise ValueError("The number of reward processing classes must match the number of reward functions.")
for i, (reward_processing_class, reward_func) in enumerate(zip(reward_processing_classes, reward_funcs)):
if isinstance(reward_func, PreTrainedModel):
if reward_processing_class is None:
reward_processing_class = AutoTokenizer.from_pretrained(reward_func.config._name_or_path)
if reward_processing_class.pad_token_id is None:
reward_processing_class.pad_token = reward_processing_class.eos_token
# The reward model computes the reward for the latest non-padded token in the input sequence.
# So it's important to set the pad token ID to the padding token ID of the processing class.
reward_func.config.pad_token_id = reward_processing_class.pad_token_id
reward_processing_classes[i] = reward_processing_class
self.reward_processing_classes = reward_processing_classes
# Training arguments
self.max_prompt_length = args.max_prompt_length
self.max_completion_length = args.max_completion_length # = |o_i| in the GRPO paper
self.num_generations = args.num_generations # = G in the GRPO paper
self.temperature = args.temperature
self.top_p = args.top_p
self.top_k = args.top_k
self.min_p = args.min_p
self.repetition_penalty = args.repetition_penalty
self.use_vllm = args.use_vllm
self.vllm_mode = args.vllm_mode
self.vllm_gpu_memory_utilization = args.vllm_gpu_memory_utilization # only applies to colocation mode
self.vllm_tensor_parallel_size = args.vllm_tensor_parallel_size # only applies to colocation mode
self.use_liger_loss = args.use_liger_loss
self.loss_type = args.loss_type
self.scale_rewards = args.scale_rewards
self.mask_truncated_completions = args.mask_truncated_completions
# Datasets
self.shuffle_dataset = args.shuffle_dataset
if (
isinstance(train_dataset, IterableDataset)
or isinstance(eval_dataset, IterableDataset)
or (
isinstance(eval_dataset, dict) and any(isinstance(ds, IterableDataset) for ds in eval_dataset.values())
)
):
# See https://github.com/huggingface/trl/issues/3213
raise NotImplementedError(
"Iterable datasets are not yet supported in GRPOTrainer. Please use a standard dataset instead."
)
# Multi-step
self.num_iterations = args.num_iterations # = 𝜇 in the GRPO paper
self.epsilon_low = args.epsilon
self.epsilon_high = args.epsilon_high if args.epsilon_high is not None else args.epsilon
# Tracks the number of iterations [forward + backward passes], including those within a grad accum cycle
self._step = 0
# Buffer the batch to reuse generated outputs across multiple updates. For more details, see
# `_get_train_sampler` and `_prepare_inputs`.
self._buffered_inputs = None
# The trainer estimates the number of FLOPs [floating-point operations] using the number of elements in the
# input tensor associated with the key "input_ids". However, in GRPO, the sampled data does not include the
# "input_ids" key. Instead, the available keys is "prompt". As a result, the trainer issues the warning:
# "Could not estimate the number of tokens of the input, floating-point operations will not be computed." To
# suppress this warning, we set the "estimate_tokens" key in the model's "warnings_issued" dictionary to True.
# This acts as a flag to indicate that the warning has already been issued.
model.warnings_issued["estimate_tokens"] = True
super().__init__(
model=model,
args=args,
data_collator=identity, # No data collation is needed in GRPO
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=processing_class,
callbacks=callbacks,
optimizers=optimizers,
)
# Reference model
self.beta = args.beta
if self.beta == 0.0:
# If beta is 0.0, the reference model is not needed
self.ref_model = None
elif is_peft_model(model):
# If PEFT is used, the reference model is not needed since the adapter can be disabled
# to revert to the initial model.
self.ref_model = None
else:
# For deepspeed, fsdp or non-distributed models, create a reference model from scratch
self.ref_model = AutoModelForCausalLM.from_pretrained(model_id, **model_init_kwargs)
# Disable dropout in the models
if args.disable_dropout:
disable_dropout_in_model(model)
if self.ref_model is not None:
disable_dropout_in_model(self.ref_model)
# Liger loss
if self.use_liger_loss:
if not is_liger_kernel_available():
raise ImportError(
"Liger is required to use `liger_loss` as the GRPO loss. Run `pip install liger-kernel`."
)
# redirect the model.module forward to the model forward to ensure pre-forward hooks are called
self._forward_redirection = _ForwardRedirection()
self.liger_grpo_loss = LigerFusedLinearGRPOLoss(
beta=self.beta,
epsilon_low=self.epsilon_low,
epsilon_high=self.epsilon_high,
temperature=self.temperature,
use_ref_model=self.beta != 0.0,
loss_type=self.loss_type,
max_completion_length=self.max_completion_length,
)
# Initialize the metrics
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)}
self._total_train_tokens = 0
self.log_completions = args.log_completions
self.wandb_log_unique_prompts = args.wandb_log_unique_prompts
self.num_completions_to_print = args.num_completions_to_print
# maxlen is set to the total number of forward passes per step. This value of `maxlen` ensures we log only the
# final optimization step.
maxlen = self.accelerator.num_processes * args.per_device_train_batch_size * args.steps_per_generation
self._textual_logs = {
"prompt": deque(maxlen=maxlen),
"completion": deque(maxlen=maxlen),
"rewards": defaultdict(lambda: deque(maxlen=maxlen)),
"advantages": deque(maxlen=maxlen),
}
# Ensure each process receives a unique seed to prevent duplicate completions when generating with
# transformers if num_generations exceeds per_device_train_batch_size. We could skip it if we use vLLM, but
# it's safer to set it in all cases.
set_seed(args.seed, device_specific=True)
if self.use_vllm:
if not is_vllm_available():
raise ImportError(
"vLLM is not available and `use_vllm` is set to True. Please install vLLM with "
"`pip install vllm` to use it."
)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
if args.vllm_server_base_url is not None:
base_url = args.vllm_server_base_url
else:
base_url = f"http://{args.vllm_server_host}:{args.vllm_server_port}"
self.vllm_client = VLLMClient(base_url=base_url, connection_timeout=args.vllm_server_timeout)
self.vllm_client.init_communicator()
elif self.vllm_mode == "colocate":
if not self.accelerator.num_processes % self.vllm_tensor_parallel_size == 0:
raise ValueError(
f"vllm_tensor_parallel_size ({self.vllm_tensor_parallel_size}) must divide world size "
f"({self.accelerator.num_processes}) evenly."
)
if self.vllm_tensor_parallel_size > 1:
self.tp_group, _ = torch.distributed.new_subgroups_by_enumeration(
[
list(range(i * self.vllm_tensor_parallel_size, (i + 1) * self.vllm_tensor_parallel_size))
for i in range(self.accelerator.num_processes // self.vllm_tensor_parallel_size)
]
)
self.llm = model.vllm_engine
self.guided_decoding_regex = args.vllm_guided_decoding_regex
self._last_loaded_step = -1
self.accelerator.wait_for_everyone()
else:
generation_kwargs = {
"max_new_tokens": self.max_completion_length,
"do_sample": True,
"pad_token_id": processing_class.pad_token_id,
"bos_token_id": processing_class.bos_token_id,
"eos_token_id": processing_class.eos_token_id,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": self.top_k,
"min_p": self.min_p,
"repetition_penalty": self.repetition_penalty,
"cache_implementation": args.cache_implementation,
}
if args.generation_kwargs is not None:
generation_kwargs.update(args.generation_kwargs)
self.generation_config = GenerationConfig(**generation_kwargs)
# Gradient accumulation requires scaled loss. Normally, loss scaling in the parent class depends on whether the
# model accepts loss-related kwargs. Since we compute our own loss, this check is irrelevant. We set
# self.model_accepts_loss_kwargs to False to enable scaling.
self.model_accepts_loss_kwargs = False
# Add tags to the model
self.model.add_model_tags(self._tag_names)
if self.ref_model is not None:
if self.is_deepspeed_enabled:
self.ref_model = prepare_deepspeed(self.ref_model, self.accelerator)
elif self.is_fsdp_enabled:
self.ref_model = prepare_fsdp(self.ref_model, self.accelerator)
else:
self.ref_model = self.accelerator.prepare_model(self.ref_model, evaluation_mode=True)
if args.sync_ref_model:
self.add_callback(SyncRefModelCallback(ref_model=self.ref_model, accelerator=self.accelerator))
for i, reward_func in enumerate(self.reward_funcs):
if isinstance(reward_func, PreTrainedModel):
if self.is_deepspeed_enabled:
self.reward_funcs[i] = prepare_deepspeed(reward_func, self.accelerator)
else:
# set device placement to True to make `prepare_model` move `reward_func` to device when using fsdp
self.reward_funcs[i] = self.accelerator.prepare_model(
reward_func, evaluation_mode=True, device_placement=True
)
def _set_signature_columns_if_needed(self):
# If `self.args.remove_unused_columns` is True, non-signature columns are removed.
# By default, this method sets `self._signature_columns` to the model's expected inputs.
# In GRPOTrainer, we preprocess data, so using the model's signature columns doesn't work.
# Instead, we set them to the columns expected by the `training_step` method, hence the override.
if self._signature_columns is None:
self._signature_columns = ["prompt"]
# This method overrides `Trainer.get_train_dataloader` to support our custom batching strategy.
# Instead of returning a standard per-step batch (i.e., `per_device_batch_size), our dataloader loads an
# *generation* batch (i.e., `per_device_batch_size × steps_per_generation`). This allows us to generate completions
# once every steps_per_generation step—rather than once per accumulation step—which is significantly more
# efficient. The only change from the original implementation is multiplying the batch size by
# `steps_per_generation`. Thus, `_prepare_inputs` is called with this *generation* batch, and it handles the
# splitting internally.
# Maintenance note: This method is a copy-paste of the original `Trainer.get_train_dataloader` with only one line
# modification. As a result, some parts of the method aren't relevant to GRPO, but we keep them to stay one line
# apart from the super method, ensuring easier maintenance in the future.
def get_train_dataloader(self):
if self.train_dataset is None:
raise ValueError("Trainer: training requires a train_dataset.")
train_dataset = self.train_dataset
data_collator = self.data_collator
if is_datasets_available() and isinstance(train_dataset, datasets.Dataset):
train_dataset = self._remove_unused_columns(train_dataset, description="training")
else:
data_collator = self._get_collator_with_removed_columns(data_collator, description="training")
dataloader_params = {
"batch_size": self._train_batch_size * self.args.steps_per_generation, # < this is the change
"collate_fn": data_collator,
"num_workers": self.args.dataloader_num_workers,
"pin_memory": self.args.dataloader_pin_memory,
"persistent_workers": self.args.dataloader_persistent_workers,
}
if not isinstance(train_dataset, torch.utils.data.IterableDataset):
dataloader_params["sampler"] = self._get_train_sampler()
dataloader_params["drop_last"] = self.args.dataloader_drop_last
if version.parse(transformers.__version__) >= version.parse("4.52.0"):
# from transformers 4.52.0, the `seed_worker` requires the `num_workers` and `rank` arguments
dataloader_params["worker_init_fn"] = partial(
seed_worker, num_workers=self.args.dataloader_num_workers, rank=self.args.process_index
)
else:
dataloader_params["worker_init_fn"] = seed_worker
dataloader_params["prefetch_factor"] = self.args.dataloader_prefetch_factor
return self.accelerator.prepare(DataLoader(train_dataset, **dataloader_params))
def _get_train_sampler(self, dataset: Optional[Dataset] = None) -> Sampler:
# Returns a sampler that
# 1. ensures each prompt is repeated across multiple processes. This guarantees that identical prompts are
# distributed to different GPUs, allowing rewards to be computed and normalized correctly within each prompt
# group. Using the same seed across processes ensures consistent prompt assignment, preventing discrepancies
# in group formation.
# 2. repeats the batch multiple times to allow reusing generations across multiple updates. Refer to
# _prepare_inputs to see how the generations are stored and reused.
# In the following figure, the values are the prompt indices. The first row shows the first sampled batch, the
# second row shows the second sampled batch, and so on.
#
# | GPU 0 | GPU 1 |
#
# global_step step <-───> num_generations=2
# <-───────> per_device_train_batch_size=3
# grad_accum ▲ ▲ 0 0 0 0 1 1 2 2 <- Generate for the first `steps_per_generation` (prompts 0 to 11); store the completions; use the first slice to compute the loss
# =2 ▼ | 0 1 3 3 4 4 5 5 <- Take the stored generations and use the second slice to compute the loss
# |
# | 1 2 6 6 7 7 8 8 <- Take the stored generations and use the third slice to compute the loss
# steps_per_gen=4 ▼ 1 3 9 9 10 10 11 11 <- Take the stored generations and use the fourth slice to compute the loss
#
# 2 4 12 12 13 13 14 14 <- Generate for the second `steps_per_generation` (prompts 12 to 23); store the completions; use the first slice to compute the loss
# 2 5 15 15 16 16 17 17 <- Take the stored generations and use the second slice to compute the loss
# ...
if dataset is None:
dataset = self.train_dataset
return RepeatSampler(
data_source=dataset,
mini_repeat_count=self.num_generations,
batch_size=self.args.generation_batch_size // self.num_generations,
repeat_count=self.num_iterations * self.args.steps_per_generation,
shuffle=self.shuffle_dataset,
seed=self.args.seed,
)
def _get_eval_sampler(self, eval_dataset) -> Sampler:
# See _get_train_sampler for an explanation of the sampler.
return RepeatSampler(
data_source=eval_dataset,
mini_repeat_count=self.num_generations,
seed=self.args.seed,
)
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: GRPOConfig) -> PreTrainedModel:
"""Enables gradient checkpointing for the model."""
# Ensure use_cache is disabled
model.config.use_cache = False
# Enable gradient checkpointing on the base model for PEFT
if is_peft_model(model):
model.base_model.gradient_checkpointing_enable()
# Enable gradient checkpointing for non-PEFT models
else:
model.gradient_checkpointing_enable()
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {}
use_reentrant = (
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]
)
if use_reentrant:
model.enable_input_require_grads()
return model
@profiling_decorator
def _get_last_hidden_state(self, unwrapped_model, input_ids, attention_mask, logits_to_keep=None):
if is_peft_model(unwrapped_model):
unwrapped_model = unwrapped_model.base_model.model
last_hidden_state = unwrapped_model.model(input_ids=input_ids, attention_mask=attention_mask).last_hidden_state
last_hidden_state = last_hidden_state[:, :-1, :] # (B, L-1, H)
if logits_to_keep is not None:
last_hidden_state = last_hidden_state[:, -logits_to_keep:, :] # (B, logits_to_keep, H)
return last_hidden_state
# Get the per-token log probabilities for the completions for the model and the reference model
def _get_per_token_logps(self, model, input_ids, attention_mask, logits_to_keep):
if True: # os.environ.get('UNSLOTH_USE_NEW_MODEL', '0') == '0':
return None # Unsloth efficient GRPO
# Otherwise, calculate normally:
if not hasattr(self, '_autocast_dtype'):
self._autocast_dtype = torch.float16 if os.environ.get('ACCELERATE_MIXED_PRECISION', 'fp16') == 'fp16' else torch.bfloat16
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': self._autocast_dtype = torch.float16
os.environ["UNSLOTH_RETURN_HIDDEN_STATES"] = "1"
with torch.amp.autocast(device_type = DEVICE_TYPE, dtype = self._autocast_dtype):
# We add 1 to `logits_to_keep` because the last logits of the sequence is later excluded
logits = model(
input_ids = input_ids,
attention_mask = attention_mask,
logits_to_keep = logits_to_keep + 1,
).logits
# logits = logits[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
return logits
# input_ids = input_ids[:, -logits_to_keep:]
# For transformers<=4.48, logits_to_keep argument isn't supported, so here we drop logits ourselves.
# See https://github.com/huggingface/trl/issues/2770
# logits = logits[:, -logits_to_keep:]
# return logits
# See https://huggingface.co/blog/the_n_implementation_details_of_rlhf_with_ppo#policy-training-implementation-details
# logits = logits / self.temperature
# logps = selective_log_softmax(logits, input_ids)
# row_indices, col_indices = torch.where(logps < -20)
# # Method 1: Check if tensors have elements
# if len(row_indices) > 0 and len(col_indices) > 0:
# breakpoint() # Breakpoint triggered here
# print("Found high values!")
# return logps # compute logprobs for the input tokens
pass
def _sync_fsdp_params_to_vllm(self, module: nn.Module, prefix: str = "", visited=None):
"""Memory-efficient post-order traversal of FSDP modules to extract full parameters and sync with vLLM."""
if visited is None:
visited = set()
for child_name, child_module in module.named_children():
child_prefix = f"{prefix}.{child_name}" if prefix else child_name
self._sync_fsdp_params_to_vllm(
child_module, prefix=child_prefix, visited=visited
) # recurse into the child
if isinstance(module, FSDP):
with FSDP.summon_full_params(module, recurse=False, writeback=False):
for param_name, param in module.named_parameters():
full_name = f"{prefix}.{param_name}" if prefix else param_name
for extra in ("_fsdp_wrapped_module.", "_checkpoint_wrapped_module."):
full_name = full_name.replace(extra, "")
if full_name in visited:
continue # skip FSDP subtrees already traversed
visited.add(full_name)
if self.vllm_mode == "server" and self.accelerator.is_main_process:
self.vllm_client.update_named_param(full_name, param.data)
elif self.vllm_mode == "colocate":
pass
pass
def _move_model_to_vllm(self, *args, **kwargs): return None
@profiling_decorator
def _prepare_inputs(
self, generation_batch: dict[str, Union[torch.Tensor, Any]]
) -> dict[str, Union[torch.Tensor, Any]]:
# Prepares inputs for model training/evaluation by managing completion generation and batch handling.
# During training:
# - Receives the local generation batch (Per-GPU batch size × steps per generation)
# from the modified training dataloader instead of the standard local batch
# - Generates completions once for the entire generation batch and splits it into batches of size
# `per_device_train_batch_size`
# - Buffers these completions and returns the appropriate slice for the current accumulation step
# - Optimizes by regenerating completions only periodically (every steps_per_generation * num_iterations)
# During evaluation:
# - The input is treated as a standard local batch (no accumulation, no multiple iterations)
# - Completions are generated for each batch without buffering or reuse
# Returns a single local batch in both cases.
if hasattr(self, 'llm'):
if getattr(self.llm.llm_engine.vllm_config.model_config, 'enable_sleep_mode', False):
self.llm.wake_up()
mode = "train" if self.model.training else "eval"
if mode == "train":
generate_every = self.args.steps_per_generation * self.num_iterations
if self._step % generate_every == 0 or self._buffered_inputs is None:
# self._buffered_inputs=None can occur when resuming from a checkpoint
generation_batch = self._generate_and_score_completions(generation_batch)
generation_batch = shuffle_tensor_dict(generation_batch)
self._buffered_inputs = split_tensor_dict(generation_batch, self.args.steps_per_generation)
inputs = self._buffered_inputs[self._step % self.args.steps_per_generation]
self._step += 1
else:
# In evaluation, there is neither batch grouping for generation, nor multiple iterations, hence
# local generation batch == local eval batch
inputs = self._generate_and_score_completions(generation_batch)
if hasattr(self, 'llm'):
if getattr(self.llm.llm_engine.vllm_config.model_config, 'enable_sleep_mode', False):
self.llm.sleep(os.environ.get('VLLM_SLEEP_MODE', 1))
return inputs
@profiling_decorator
def _calculate_rewards(self, inputs, prompts, completions, completion_ids_list):
device = self.accelerator.device
rewards_per_func = torch.zeros(len(prompts), len(self.reward_funcs), device=device)
# Repeat all input columns (but "prompt", "completion", and "completion_ids") to match the num of generations
keys = [key for key in inputs[0] if key not in ["prompt", "completion", "completion_ids"]]
reward_kwargs = {key: [example[key] for example in inputs] for key in keys}
for i, (reward_func, reward_processing_class, reward_func_name) in enumerate(
zip(self.reward_funcs, self.reward_processing_classes, self.reward_func_names)
):
with profiling_context(self, reward_func_name):
if isinstance(reward_func, nn.Module): # Module (no PretrainedModel) for compat with compiled models
if is_conversational(inputs[0]):
messages = [{"messages": p + c} for p, c in zip(prompts, completions)]
texts = [apply_chat_template(x, reward_processing_class)["text"] for x in messages]
else:
texts = [p + c for p, c in zip(prompts, completions)]
reward_inputs = reward_processing_class(
text=texts, return_tensors="pt", padding=True, padding_side="right", add_special_tokens=False
)
reward_inputs = super()._prepare_inputs(reward_inputs)
with torch.inference_mode():
rewards_per_func[:, i] = reward_func(**reward_inputs).logits[:, 0] # Shape (B*G,)
else:
output_reward_func = reward_func(
prompts=prompts, completions=completions, completion_ids=completion_ids_list, **reward_kwargs
)
# Convert None values to NaN
output_reward_func = [reward if reward is not None else torch.nan for reward in output_reward_func]
rewards_per_func[:, i] = torch.tensor(output_reward_func, dtype=torch.float32, device=device)
# If all reward functions return None for a given row, issue a detailed warning
if torch.isnan(rewards_per_func).all(dim=1).any():
nan_row_idx = torch.isnan(rewards_per_func).all(dim=1).nonzero(as_tuple=True)[0][0]
row_reward_kwargs = {key: value[nan_row_idx] for key, value in reward_kwargs.items()}
row_reward_kwargs["prompt"] = prompts[nan_row_idx]
row_reward_kwargs["completion"] = completions[nan_row_idx]
warnings.warn(
f"All reward functions returned None for the following kwargs: {row_reward_kwargs}. "
"Please ensure that at least one reward function returns a valid reward."
)
# Gather the reward per function: this part is crucial, because the rewards are normalized per group and the
# completions may be distributed across processes
rewards_per_func = gather(rewards_per_func)
return rewards_per_func
def _generate_and_score_completions(
self, inputs: list[dict[str, Union[torch.Tensor, Any]]]
) -> dict[str, Union[torch.Tensor, Any]]:
device = self.accelerator.device
mode = "train" if self.model.training else "eval"
prompts = [x["prompt"] for x in inputs]
prompts_text = [maybe_apply_chat_template(example, self.processing_class)["prompt"] for example in inputs]
prompt_inputs = self.processing_class(
text=prompts_text, return_tensors="pt", padding=True, padding_side="left", add_special_tokens=False
)
prompt_inputs = super()._prepare_inputs(prompt_inputs)
prompt_ids, prompt_mask = prompt_inputs["input_ids"], prompt_inputs["attention_mask"]
if self.max_prompt_length is not None:
# If max_prompt_length is set, we trim the prompt to keep only the last `max_prompt_length` tokens.
# Then we decode those tokens back into text. We manually remove leading pad tokens from the decoded text,
# because we can't use `skip_special_tokens=True` (some special tokens are still needed for generation).
prompt_ids = prompt_ids[:, -self.max_prompt_length :]
prompt_mask = prompt_mask[:, -self.max_prompt_length :]
prompts_text = self.processing_class.batch_decode(
prompt_ids, skip_special_tokens=False, clean_up_tokenization_spaces=False
)
prompts_text = [
re.sub(rf"^({re.escape(self.processing_class.pad_token)})+", "", text) for text in prompts_text
]
# Generate completions using either vLLM or regular generation
if self.use_vllm:
# First, update the vLLM weights if needed
if self.state.global_step != self._last_loaded_step:
self._move_model_to_vllm()
self._last_loaded_step = self.state.global_step
# Generate completions using vLLM: gather all prompts and use them in a single call in the main process
if self.vllm_mode == "server":
all_prompts_text = gather_object(prompts_text)
if self.accelerator.is_main_process:
# Since 'prompts' contains 'num_generations' duplicates, we first take unique prompts, and generate
# num_generations outputs for each one. This is faster than generating outputs for each duplicate
# prompt individually.
ordered_set_of_prompts = all_prompts_text[:: self.num_generations]
with profiling_context(self, "vLLM.generate"):
completion_ids = self.vllm_client.generate(
prompts=ordered_set_of_prompts,
n=self.num_generations,
repetition_penalty=self.repetition_penalty,
temperature=self.temperature,
top_p=self.top_p,
top_k=-1 if self.top_k is None else self.top_k,
min_p=0.0 if self.min_p is None else self.min_p,
max_tokens=self.max_completion_length,
guided_decoding_regex=self.guided_decoding_regex,
generation_kwargs=self.args.generation_kwargs,
)
else:
completion_ids = [None] * len(all_prompts_text)
# Broadcast the completions from the main process to all processes, ensuring each process receives its
# corresponding slice.
completion_ids = broadcast_object_list(completion_ids, from_process=0)
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
completion_ids = completion_ids[process_slice]
# Generate completions using colocated vLLM instances: each device holds vLLM copy and work on their own batch of prompts
elif self.vllm_mode == "colocate":
if self.guided_decoding_regex:
guided_decoding = GuidedDecodingParams(backend="outlines", regex=self.guided_decoding_regex)
else:
guided_decoding = None
generation_kwargs = {
"n": 1, # vLLM on each GPU generates only 1 in colocate mode
"repetition_penalty": self.repetition_penalty,
"temperature": self.temperature,
"top_p": self.top_p,
"top_k": -1 if self.top_k is None else self.top_k,
"min_p": 0.0 if self.min_p is None else self.min_p,
"max_tokens": self.max_completion_length,
"guided_decoding": guided_decoding,
}
if self.args.generation_kwargs is not None:
generation_kwargs.update(self.args.generation_kwargs)
sampling_params = SamplingParams(**generation_kwargs)
if self.vllm_tensor_parallel_size > 1:
# Gather prompts from all ranks in the TP group and flatten.
# Each rank starts with its own prompts; after gathering, all ranks see the full group set.
orig_size = len(prompts_text)
gathered_prompts = [None for _ in range(self.vllm_tensor_parallel_size)]
torch.distributed.all_gather_object(gathered_prompts, prompts_text, group=self.tp_group)
all_prompts_text = [p for sublist in gathered_prompts for p in sublist]
else:
all_prompts_text = prompts_text
with profiling_context(self, "vLLM.generate"):
all_outputs = self.llm.generate(all_prompts_text, sampling_params=sampling_params, use_tqdm=False, lora_request = self.model.load_lora('grpo_trainer_lora_model', load_tensors = True))
completion_ids = [output.token_ids for outputs in all_outputs for output in outputs.outputs]
if self.vllm_tensor_parallel_size > 1:
# Slice completions for this rank within its TP group.
# Each rank generates all outputs — we keep only our share.
local_rank_in_group = torch.distributed.get_rank(group=self.tp_group)
tp_slice = slice(local_rank_in_group * orig_size, (local_rank_in_group + 1) * orig_size)
completion_ids = completion_ids[tp_slice]
# Pad the completions, and concatenate them with the prompts
completion_ids = [torch.tensor(ids, device=device) for ids in completion_ids]
completion_ids = pad(completion_ids, padding_value=self.processing_class.pad_token_id)
prompt_completion_ids = torch.cat([prompt_ids, completion_ids], dim=1)
else:
# Regular generation path
with unwrap_model_for_generation(
self.model_wrapped, self.accelerator, gather_deepspeed3_params=self.args.ds3_gather_for_generation
) as unwrapped_model:
with (
FSDP.summon_full_params(self.model_wrapped, recurse=False)
if self.is_fsdp_enabled
else nullcontext()
):
prompt_completion_ids = unwrapped_model.generate(
prompt_ids, attention_mask=prompt_mask, generation_config=self.generation_config
)
# Compute prompt length and extract completion ids
prompt_length = prompt_ids.size(1)
prompt_ids = prompt_completion_ids[:, :prompt_length]
completion_ids = prompt_completion_ids[:, prompt_length:]
# Mask everything after the first EOS token
is_eos = completion_ids == self.processing_class.eos_token_id
eos_idx = torch.full((is_eos.size(0),), is_eos.size(1), dtype=torch.long, device=device)
eos_idx[is_eos.any(dim=1)] = is_eos.int().argmax(dim=1)[is_eos.any(dim=1)]
sequence_indices = torch.arange(is_eos.size(1), device=device).expand(is_eos.size(0), -1)
completion_mask = (sequence_indices <= eos_idx.unsqueeze(1)).int()
# Convert tensor to a list of lists of token IDs. This will be passed to the reward function, avoiding the need
# to re-tokenize completions if the reward is computed from tokens.
completion_ids_list = [
[id.item() for id, m in zip(row, mask_row) if m] for row, mask_row in zip(completion_ids, completion_mask)
]
# Sum along sequence dimension (dim=1) to get completion length per sequence, used for logging
completion_lengths = completion_mask.sum(1)
# If mask_truncated_completions is enabled, zero out truncated completions in completion_mask
if self.mask_truncated_completions:
truncated_completions = ~is_eos.any(dim=1)
completion_mask = completion_mask * (~truncated_completions).unsqueeze(1).int()
# Concatenate prompt_mask with completion_mask for logit computation
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1) # (B, P+C)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
batch_size = self.args.per_device_train_batch_size if mode == "train" else self.args.per_device_eval_batch_size
with torch.no_grad():
# When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
# old_per_token_logps == per_token_logps, so we can skip it's computation here, and use
# per_token_logps.detach() instead.
if self.num_iterations > 1 or self.args.steps_per_generation > self.args.gradient_accumulation_steps:
old_per_token_logps = self._get_per_token_logps(
self.model, prompt_completion_ids, attention_mask, logits_to_keep, batch_size
)
else:
old_per_token_logps = None
# Compute the per-token log probabilities for the reference model
if self.beta != 0.0:
if self.ref_model is not None:
ref_per_token_logps = self._get_per_token_logps(
self.ref_model, prompt_completion_ids, attention_mask, logits_to_keep
)
else:
with self.accelerator.unwrap_model(self.model).disable_adapter():
ref_per_token_logps = self._get_per_token_logps(
self.model, prompt_completion_ids, attention_mask, logits_to_keep
)
else:
ref_per_token_logps = None
# Decode the generated completions
completions_text = self.processing_class.batch_decode(completion_ids, skip_special_tokens=True)
if is_conversational(inputs[0]):
completions = []
for prompt, completion in zip(prompts, completions_text):
bootstrap = prompt.pop()["content"] if prompt[-1]["role"] == "assistant" else ""
completions.append([{"role": "assistant", "content": bootstrap + completion}])
else:
completions = completions_text
# Calculate rewards for each reward function. rewards_per_func aggregates rewards across all processes. This is
# important because rewards will be normalized per group, and completions are distributed. We will later slice
# rewards_per_func to extract each process's subset.
rewards_per_func = self._calculate_rewards(inputs, prompts, completions, completion_ids_list)
# Apply weights to each reward function's output and sum
rewards = (rewards_per_func * self.reward_weights.to(device).unsqueeze(0)).nansum(dim=1)
# Compute grouped-wise rewards
mean_grouped_rewards = rewards.view(-1, self.num_generations).mean(dim=1)
std_grouped_rewards = rewards.view(-1, self.num_generations).std(dim=1)
is_std_zero = torch.isclose(std_grouped_rewards, torch.zeros_like(std_grouped_rewards))
# Normalize the rewards to compute the advantages
mean_grouped_rewards = mean_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
std_grouped_rewards = std_grouped_rewards.repeat_interleave(self.num_generations, dim=0)
advantages = rewards - mean_grouped_rewards
if self.scale_rewards:
advantages = advantages / (std_grouped_rewards + 1e-4)
# Slice to keep only the local part of the data
process_slice = slice(
self.accelerator.process_index * len(prompts),
(self.accelerator.process_index + 1) * len(prompts),
)
all_process_advantages = advantages.clone() # keep the aggregated advantages for logging
advantages = advantages[process_slice]
# Log the metrics
if mode == "train":
self.state.num_input_tokens_seen += self.accelerator.gather(attention_mask.sum()).sum().item()
self._metrics[mode]["num_tokens"] = [self.state.num_input_tokens_seen]
# Log completion lengths, mean, min, max
agg_completion_lengths = self.accelerator.gather(completion_lengths)
self._metrics[mode]["completions/mean_length"].append(agg_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_length"].append(agg_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_length"].append(agg_completion_lengths.float().max().item())
# Identify sequences that terminated with EOS and log their lengths
agg_terminated_with_eos = self.accelerator.gather(is_eos.any(dim=1))
term_completion_lengths = agg_completion_lengths[agg_terminated_with_eos]
clipped_completions_ratio = 1 - len(term_completion_lengths) / len(agg_completion_lengths)
self._metrics[mode]["completions/clipped_ratio"].append(clipped_completions_ratio)
if len(term_completion_lengths) == 0: # edge case where no terminated sequences are found
term_completion_lengths = torch.zeros(1, device=device)
self._metrics[mode]["completions/mean_terminated_length"].append(term_completion_lengths.float().mean().item())
self._metrics[mode]["completions/min_terminated_length"].append(term_completion_lengths.float().min().item())
self._metrics[mode]["completions/max_terminated_length"].append(term_completion_lengths.float().max().item())
# Calculate mean reward per function, but only for samples where the function was applied (non-NaN values)
for i, reward_func_name in enumerate(self.reward_func_names):
mean_rewards = torch.nanmean(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/mean"].append(mean_rewards)
std_rewards = nanstd(rewards_per_func[:, i]).item()
self._metrics[mode][f"rewards/{reward_func_name}/std"].append(std_rewards)
self._metrics[mode]["reward"].append(mean_grouped_rewards.mean().item())
self._metrics[mode]["reward_std"].append(std_grouped_rewards.mean().item())
self._metrics[mode]["frac_reward_zero_std"].append(is_std_zero.float().mean().item())
# Log prompt and completion texts
self._textual_logs["prompt"].extend(gather_object(prompts_text))
self._textual_logs["completion"].extend(gather_object(completions_text))
for i, name in enumerate(self.reward_func_names):
self._textual_logs["rewards"][name].extend(rewards_per_func[:, i].tolist())
self._textual_logs["advantages"].extend(all_process_advantages.tolist())
return {
"prompt_ids": prompt_ids,
"prompt_mask": prompt_mask,
"completion_ids": completion_ids,
"completion_mask": completion_mask,
"advantages": advantages,
"old_per_token_logps": old_per_token_logps,
"ref_per_token_logps": ref_per_token_logps,
}
def compute_liger_loss(self, unwrapped_model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
# get the last hidden state of the model
last_hidden_state = self._get_last_hidden_state(unwrapped_model, input_ids, attention_mask, logits_to_keep)
# compute loss and metrics using liger grpo loss
loss, metrics = self.liger_grpo_loss(
_input=last_hidden_state,
lin_weight=unwrapped_model.lm_head.weight,
selected_token_ids=completion_ids,
attention_mask=completion_mask,
advantages=inputs["advantages"],
bias=unwrapped_model.lm_head.bias,
old_per_token_logps=inputs["old_per_token_logps"],
ref_per_token_logps=inputs["ref_per_token_logps"],
)
# Extract metrics from the liger_grpo_loss output
# KL divergence is the first metric when beta is non-zero
mean_kl = metrics[0] if self.beta != 0.0 else None
clip_ratio = metrics[-1]
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).mean().item())
self._metrics[mode]["clip_ratio"].append(self.accelerator.gather(clip_ratio).mean().item())
return loss
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None):
if return_outputs:
raise ValueError("The GRPOTrainer does not support returning outputs")
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
bsz, qlen = input_ids.shape
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
# attention_mask = None
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
_input_ids = input_ids
_logits_to_keep = logits_to_keep
get_logps_func = \
lambda model, input_ids, attention_mask, logits_to_keep, batch_size=None, compute_entropy=False: \
self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep) \
if hasattr(self, "_get_per_token_logps") else \
self._get_per_token_logps_and_entropies(model, input_ids, attention_mask, logits_to_keep, batch_size, compute_entropy)['logps']
per_token_logps = get_logps_func(model, input_ids, attention_mask, logits_to_keep)
# Compute the KL divergence between the model and the reference model
# _prepare_inputs doesn't return reference log probs anymore. We need to calculate it ourselves.
# https://github.com/huggingface/trl/blob/05bc43e960396581e458195b8388efe6b82cae1f/trl/trainer/grpo_trainer.py#L1328
if self.beta != 0.0:
with torch.inference_mode(), model.disable_adapter():
ref_per_token_logps = per_token_logps = get_logps_func(model, input_ids, attention_mask, logits_to_keep)
else:
ref_per_token_logps = None
# per_token_kl = torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
# x - x.detach() allows for preserving gradients from x
advantages = inputs["advantages"]
# per_token_loss = torch.exp(per_token_logps - per_token_logps.detach()) * advantages.unsqueeze(1)
# per_token_loss = -(per_token_loss - self.beta * per_token_kl)
# loss = ((per_token_loss * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
old_hidden_states = inputs.get("old_per_token_logps", None)
input_ids = input_ids[:, -logits_to_keep:]
# Get logit softcapping and logit scale
logit_softcapping = getattr(model.config, "final_logit_softcapping", 0) # Gemma
if logit_softcapping is None: logit_softcapping = 0
logit_scale_multiply = getattr(model.config, "logit_scale", 0) # Cohere
if logit_scale_multiply is None: logit_scale_multiply = 0
logit_scale_divide = getattr(model.config, "logits_scaling", 0) # Granite
if logit_scale_divide is None: logit_scale_divide = 0
if per_token_logps is not None:
if ref_per_token_logps is not None:
ref_per_token_logps = ref_per_token_logps[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
per_token_logps = per_token_logps[:, :-1, :] # (B, L-1, V), exclude the last logit: it corresponds to the next token pred
loss, completion_length, mean_kl = grpo_compute_loss_slow(
ref_per_token_logps,
per_token_logps,
old_hidden_states,
input_ids,
completion_mask,
self.beta,
advantages,
loss_type = self.args.loss_type,
epsilon_low = self.epsilon_low,
epsilon_high = self.epsilon_high,
max_completion_length = self.args.max_completion_length,
delta = self.args.delta,
temperature = self.args.temperature,
logit_softcapping = logit_softcapping,
logit_scale_multiply = logit_scale_multiply,
logit_scale_divide = logit_scale_divide,
)
else:
if hasattr(self.args, "loss_type"):
loss, completion_length, mean_kl = grpo_accumulated_loss(
trainer = self,
input_ids = _input_ids,
logits_to_keep = logits_to_keep,
completion_mask = completion_mask,
advantages = advantages,
old_hidden_states = old_hidden_states,
n_chunks = self.args.unsloth_num_chunks,
loss_type = self.args.loss_type,
epsilon_low = self.epsilon_low,
epsilon_high = self.epsilon_high,
max_completion_length = self.args.max_completion_length,
delta = self.args.delta,
temperature = self.args.temperature,
logit_softcapping = logit_softcapping,
logit_scale_multiply = logit_scale_multiply,
logit_scale_divide = logit_scale_divide,
attention_mask = attention_mask,
)
else:
# to ensure backwards compatibility with trl 0.15.2 and maybe even 0.17
loss, completion_length, mean_kl = grpo_accumulated_loss(
trainer = self,
input_ids = _input_ids,
logits_to_keep = logits_to_keep,
completion_mask = completion_mask,
advantages = advantages,
old_hidden_states = old_hidden_states,
n_chunks = self.args.unsloth_num_chunks,
temperature = self.args.temperature,
logit_softcapping = logit_softcapping,
logit_scale_multiply = logit_scale_multiply,
logit_scale_divide = logit_scale_divide,
attention_mask = attention_mask,
)
pass
pass
# Log the metrics
# completion_length = self.accelerator.gather_for_metrics(completion_mask.sum(1)).float().mean().item()
# mean_kl = ((per_token_kl * completion_mask).sum(dim=1) / completion_mask.sum(dim=1)).mean()
# self._metrics["kl"].append(self.accelerator.gather_for_metrics(mean_kl).mean().item())
if "train" in self._metrics:
mode = "eval" if self.control.should_evaluate else "train"
self._metrics[mode]["completion_length"].append(completion_length.item())
self._metrics[mode]["kl"].append(mean_kl.item())
else:
self._metrics["completion_length"].append(completion_length.item())
self._metrics["kl"].append(mean_kl.item())
return loss
def _compute_loss(self, model, inputs):
# Compute the per-token log probabilities for the model
prompt_ids, prompt_mask = inputs["prompt_ids"], inputs["prompt_mask"]
completion_ids, completion_mask = inputs["completion_ids"], inputs["completion_mask"]
input_ids = torch.cat([prompt_ids, completion_ids], dim=1)
attention_mask = torch.cat([prompt_mask, completion_mask], dim=1)
logits_to_keep = completion_ids.size(1) # we only need to compute the logits for the completion tokens
per_token_logps = self._get_per_token_logps(model, input_ids, attention_mask, logits_to_keep)
# Compute the KL divergence between the model and the reference model
if self.beta != 0.0:
ref_per_token_logps = inputs["ref_per_token_logps"]
per_token_kl = (
torch.exp(ref_per_token_logps - per_token_logps) - (ref_per_token_logps - per_token_logps) - 1
)
# Compute the loss
advantages = inputs["advantages"]
# When using num_iterations == 1 and steps_per_generation <= gradient_accumulation_steps
# old_per_token_logps == per_token_logps, so we can skip it's computation
# (see _generate_and_score_completions) and use per_token_logps.detach() instead.
old_per_token_logps = (
per_token_logps.detach() if inputs["old_per_token_logps"] is None else inputs["old_per_token_logps"]
)
coef_1 = torch.exp(per_token_logps - old_per_token_logps)
coef_2 = torch.clamp(coef_1, 1 - self.epsilon_low, 1 + self.epsilon_high)
# Two-sided clipping
if self.args.delta is not None:
coef_1 = torch.clamp(coef_1, max=self.args.delta)
per_token_loss1 = coef_1 * advantages.unsqueeze(1)
per_token_loss2 = coef_2 * advantages.unsqueeze(1)
per_token_loss = -torch.min(per_token_loss1, per_token_loss2)
if self.beta != 0.0:
per_token_loss = per_token_loss + self.beta * per_token_kl
if self.loss_type == "grpo":
loss = ((per_token_loss * completion_mask).sum(-1) / completion_mask.sum(-1).clamp(min=1.0)).mean()
elif self.loss_type == "bnpo":
loss = (per_token_loss * completion_mask).sum() / completion_mask.sum().clamp(min=1.0)
elif self.loss_type == "dr_grpo":
loss = (per_token_loss * completion_mask).sum() / (per_token_loss.size(0) * self.max_completion_length)
else:
raise ValueError(f"Unknown loss type: {self.loss_type}")
# Log the metrics
mode = "train" if self.model.training else "eval"
if self.beta != 0.0:
mean_kl = (per_token_kl * completion_mask).sum() / completion_mask.sum()
self._metrics[mode]["kl"].append(self.accelerator.gather(mean_kl).nanmean().item())
# Compute the clipped probability ratios
is_low_clipped = (coef_1 < 1 - self.epsilon_low) & (advantages.unsqueeze(1) < 0)
is_high_clipped = (coef_1 > 1 + self.epsilon_high) & (advantages.unsqueeze(1) > 0)
is_region_clipped = is_low_clipped | is_high_clipped
low_clip = (is_low_clipped * completion_mask).sum() / completion_mask.sum()
high_clip = (is_high_clipped * completion_mask).sum() / completion_mask.sum()
clip_ratio = (is_region_clipped * completion_mask).sum() / completion_mask.sum()
gathered_low_clip = self.accelerator.gather(low_clip)
self._metrics[mode]["clip_ratio/low_mean"].append(gathered_low_clip.nanmean().item())
self._metrics[mode]["clip_ratio/low_min"].append(nanmin(gathered_low_clip).item())
gathered_high_clip = self.accelerator.gather(high_clip)
self._metrics[mode]["clip_ratio/high_mean"].append(gathered_high_clip.nanmean().item())
self._metrics[mode]["clip_ratio/high_max"].append(nanmax(gathered_high_clip).item())
gathered_clip_ratio = self.accelerator.gather(clip_ratio)
self._metrics[mode]["clip_ratio/region_mean"].append(gathered_clip_ratio.nanmean().item())
return loss
def prediction_step(self, model, inputs, prediction_loss_only, ignore_keys: Optional[list[str]] = None):
inputs = self._prepare_inputs(inputs)
with torch.no_grad():
with self.compute_loss_context_manager():
loss = self.compute_loss(model, inputs)
loss = loss.mean().detach()
return loss, None, None
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None:
mode = "train" if self.model.training else "eval"
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} # average the metrics
# This method can be called both in training and evaluation. When called in evaluation, the keys in `logs`
# start with "eval_". We need to add the prefix "eval_" to the keys in `metrics` to match the format.
if mode == "eval":
metrics = {f"eval_{key}": val for key, val in metrics.items()}
logs = {**logs, **metrics}
super().log(logs, start_time)
self._metrics[mode].clear()
if self.accelerator.is_main_process and self.log_completions:
if is_rich_available():
print_prompt_completions_sample(
self._textual_logs["prompt"],
self._textual_logs["completion"],
self._textual_logs["rewards"],
self._textual_logs["advantages"],
self.state.global_step,
self.num_completions_to_print,
)
if self.args.report_to and "wandb" in self.args.report_to and wandb.run is not None:
import pandas as pd
table = {
"step": [str(self.state.global_step)] * len(self._textual_logs["prompt"]),
"prompt": self._textual_logs["prompt"],
"completion": self._textual_logs["completion"],
**self._textual_logs["rewards"],
"advantage": self._textual_logs["advantages"],
}
df = pd.DataFrame(table)
if self.wandb_log_unique_prompts:
df = df.drop_duplicates(subset=["prompt"])
wandb.log({"completions": wandb.Table(dataframe=df)})
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
# normalize `tags` to a mutable set
if tags is None:
tags = set()
elif isinstance(tags, str):
tags = {tags}
else:
tags = set(tags)
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
citation = textwrap.dedent(
"""\
@article{zhihong2024deepseekmath,
title = {{DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models}},
author = {Zhihong Shao and Peiyi Wang and Qihao Zhu and Runxin Xu and Junxiao Song and Mingchuan Zhang and Y. K. Li and Y. Wu and Daya Guo},
year = 2024,
eprint = {arXiv:2402.03300},
}
"""
)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="GRPO",
trainer_citation=citation,
paper_title="DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models",
paper_id="2402.03300",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothGRPOTrainer(_UnslothGRPOTrainer):
"""
Trainer for the Group Relative Policy Optimization (GRPO) method. This algorithm was initially proposed in the
paper [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language
Models](https://huggingface.co/papers/2402.03300).
Example:
```python
from datasets import load_dataset
from trl import GRPOTrainer
dataset = load_dataset("trl-lib/tldr", split="train")
def reward_func(completions, **kwargs):
# Dummy reward function that rewards completions with more unique letters.
return [float(len(set(completion))) for completion in completions]
trainer = GRPOTrainer(
model="Qwen/Qwen2-0.5B-Instruct",
reward_funcs=reward_func,
train_dataset=dataset,
)
trainer.train()
```
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
`args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
reward_funcs (`Union[RewardFunc, list[RewardFunc]]`):
Reward functions to be used for computing the rewards. To compute the rewards, we call all the reward
functions with the prompts and completions and sum the rewards. Can be either:
- A single reward function, such as:
- A string: The *model ID* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForSequenceClassification.from_pretrained`] with `num_labels=1` and the
keyword arguments in `args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object: Only sequence classification models are supported.
- A custom reward function: The function is provided with the prompts and the generated completions,
plus any additional columns in the dataset. It should return a list of rewards. Custom reward
functions can also return None when the reward is not applicable to those samples. This is useful for
multi-task training where different reward functions apply to different types of samples. When a
reward function returns None for a sample, that reward function is excluded from the reward
calculation for that sample. For more details, see [Using a custom reward
function](#using-a-custom-reward-function).
- A list of reward functions, where each item can independently be any of the above types. Mixing different
types within the list (e.g., a string model ID and a custom reward function) is allowed.
args ([`GRPOConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]):
Dataset to use for training. It must include a column `"prompt"`. Any additional columns in the dataset is
ignored. The format of the samples can be either:
- [Standard](dataset_formats#standard): Each sample contains plain text.
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role
and content).
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`):
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. The padding side must be set to "left". If `None`, the
processing class is loaded from the model's name with [`~transformers.AutoTokenizer.from_pretrained`]. A
padding token, `processing_class.pad_token`, must be set. If the processing class has not set a padding
token, `processing_class.eos_token` will be used as the default.
reward_processing_classes (`Union[PreTrainedTokenizerBase, list[PreTrainedTokenizerBase]]`, *optional*, defaults to `None`):
Processing classes corresponding to the reward functions specified in `reward_funcs`. Can be either:
- A single processing class: Used when `reward_funcs` contains only one reward function.
- A list of processing classes: Must match the order and length of the reward functions in `reward_funcs`.
If set to `None`, or if an element of the list corresponding to a [`~transformers.PreTrainedModel`] is
`None`, the tokenizer for the model is automatically loaded using
[`~transformers.AutoTokenizer.from_pretrained`]. For elements in `reward_funcs` that are custom reward
functions (not [`~transformers.PreTrainedModel`]), the corresponding entries in `reward_processing_classes`
are ignored.
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`):
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed
in [here](https://huggingface.co/docs/transformers/main_classes/callback).
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`]
method.
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`):
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`.
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`):
PEFT configuration used to wrap the model. If `None`, the model is not wrapped.
"""
def __init__(
self,
model,
reward_funcs,
args = None,
train_dataset = None,
eval_dataset = None,
processing_class = None,
reward_processing_classes = None,
callbacks = None,
peft_config = None,
**kwargs
):
if args is None: args = UnslothGRPOConfig()
use_bf16 = getattr(args, 'bf16', False)
if type(use_bf16) is not bool: use_bf16 = False
use_fp16 = getattr(args, 'fp16', False)
if type(use_fp16) is not bool: use_fp16 = False
force_float32 = False
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
if type(fp16_full_eval) is not bool: fp16_full_eval = False
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if type(bf16_full_eval) is not bool: bf16_full_eval = False
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
other_metrics = []
if not isinstance(reward_funcs, list): _reward_funcs = [reward_funcs]
else: _reward_funcs = reward_funcs
for reward_func in _reward_funcs:
try:
reward_func_name = reward_func.__name__
if True:
other_metrics.append(f'rewards/{reward_func_name}/mean')
if True:
other_metrics.append(f'rewards/{reward_func_name}/std')
if False:
other_metrics.append(f'rewards/{reward_func_name}')
except: pass
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('grpo_trainer', other_metrics)
super().__init__(
model = model,
reward_funcs = reward_funcs,
args = args,
train_dataset = train_dataset,
eval_dataset = eval_dataset,
processing_class = processing_class,
reward_processing_classes = reward_processing_classes,
callbacks = callbacks,
peft_config = peft_config,**kwargs)
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
pass
|