gemini-docs-dbfiles / unsloth_compiled_cache /UnslothIterativeSFTTrainer.py
arshjaved's picture
Upload all project files and folders
2e9b585 verified
"""
2025.7.4
2025.7.3
4.53.2
0.19.1
__UNSLOTH_VERSIONING__
"""
from torch import Tensor
import torch
import torch.nn as nn
from torch.nn import functional as F
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable
from trl.trainer.iterative_sft_trainer import (AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, DataCollator, DataCollatorForLanguageModeling, DataCollatorForSeq2Seq, DataLoader, Dataset, EvalLoopOutput, FeatureExtractionMixin, IterativeSFTConfig, IterativeSFTTrainer, Optional, PPODecorators, Path, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, Trainer, TrainingArguments, Union, generate_model_card, get_comet_experiment_url, is_peft_available, is_wandb_available, os, torch, wandb, warnings, Optional, PeftModel, PreTrainedModel, Trainer, is_peft_available, os, torch)
import os
from typing import *
from dataclasses import dataclass, field
from packaging.version import Version
import torch
import numpy as np
from contextlib import nullcontext
from torch.nn import functional as F
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling
torch_compile_options = {
"epilogue_fusion" : True,
"max_autotune" : False,
"shape_padding" : True,
"trace.enabled" : False,
"triton.cudagraphs" : False,
}
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,)
def selective_log_softmax(logits, index):
logits = logits.to(torch.float32)
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1)
# loop to reduce peak mem consumption
# logsumexp_values = torch.stack([torch.logsumexp(lg, dim=-1) for lg in logits])
logsumexp_values = torch.logsumexp(logits, dim = -1)
per_token_logps = selected_logits - logsumexp_values # log_softmax(x_i) = x_i - logsumexp(x)
return per_token_logps
@dataclass
class UnslothIterativeSFTConfig(IterativeSFTConfig):
"""
Configuration class for the [`IterativeSFTTrainer`].
This class includes only the parameters that are specific to Iterative SFT training. For a full list of training
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this
class may differ from those in [`~transformers.TrainingArguments`].
Using [`~transformers.HfArgumentParser`] we can turn this class into
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the
command line.
Parameters:
> Parameters that control the model
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`):
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model`
argument of the [`IterativeSFTTrainer`] is provided as a string.
> Parameters that control the data preprocessing
max_length (`int` or `None`, *optional*, defaults to `None`):
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated.
truncation_mode (`str`, *optional*, defaults to `"keep_end"`):
The truncation mode to use, either `"keep_end"` or `"keep_start"`.
optimize_device_cache (`bool`, *optional*, defaults to `False`):
Whether to optimize accelerator cache for slightly more memory-efficient training.
"""
vllm_sampling_params: Optional[Any] = field(
default = None,
metadata = {'help': 'vLLM SamplingParams'},
)
unsloth_num_chunks : Optional[int] = field(
default = -1,
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'},
)
def __init__(
self,
output_dir = None,
overwrite_output_dir = None,
do_train = False,
do_eval = False,
do_predict = False,
eval_strategy = 'no',
prediction_loss_only = False,
per_device_train_batch_size = 4,
per_device_eval_batch_size = 4,
per_gpu_train_batch_size = None,
per_gpu_eval_batch_size = None,
gradient_accumulation_steps = 2,
eval_accumulation_steps = 2,
eval_delay = 0,
torch_empty_cache_steps = 250,
learning_rate = 5e-05,
weight_decay = 0.01,
adam_beta1 = 0.9,
adam_beta2 = 0.999,
adam_epsilon = 1e-08,
max_grad_norm = 1.0,
num_train_epochs = 3.0,
max_steps = -1,
lr_scheduler_type = 'linear',
warmup_ratio = 0.1,
warmup_steps = 0,
log_level = 'passive',
log_level_replica = 'warning',
log_on_each_node = True,
logging_dir = None,
logging_strategy = 'steps',
logging_first_step = False,
logging_steps = 1,
logging_nan_inf_filter = False,
save_strategy = 'steps',
save_steps = 500,
save_total_limit = None,
save_safetensors = True,
save_on_each_node = False,
save_only_model = False,
restore_callback_states_from_checkpoint = False,
no_cuda = False,
use_cpu = False,
use_mps_device = False,
seed = 3407,
data_seed = 3407,
jit_mode_eval = False,
use_ipex = False,
bf16 = False,
fp16 = False,
fp16_opt_level = 'O1',
half_precision_backend = 'auto',
bf16_full_eval = False,
fp16_full_eval = False,
tf32 = None,
local_rank = -1,
ddp_backend = None,
tpu_num_cores = None,
tpu_metrics_debug = False,
debug = '',
dataloader_drop_last = False,
eval_steps = None,
dataloader_num_workers = 0,
dataloader_prefetch_factor = None,
past_index = -1,
run_name = None,
disable_tqdm = None,
remove_unused_columns = True,
label_names = None,
load_best_model_at_end = False,
metric_for_best_model = None,
greater_is_better = None,
ignore_data_skip = False,
fsdp = '',
fsdp_min_num_params = 0,
fsdp_config = None,
fsdp_transformer_layer_cls_to_wrap = None,
accelerator_config = None,
deepspeed = None,
label_smoothing_factor = 0.0,
optim = 'adamw_8bit',
optim_args = None,
adafactor = False,
group_by_length = False,
length_column_name = 'length',
report_to = None,
ddp_find_unused_parameters = None,
ddp_bucket_cap_mb = None,
ddp_broadcast_buffers = None,
dataloader_pin_memory = True,
dataloader_persistent_workers = False,
skip_memory_metrics = True,
use_legacy_prediction_loop = False,
push_to_hub = False,
resume_from_checkpoint = None,
hub_model_id = None,
hub_strategy = 'every_save',
hub_token = None,
hub_private_repo = None,
hub_always_push = False,
hub_revision = None,
gradient_checkpointing = False,
gradient_checkpointing_kwargs = None,
include_inputs_for_metrics = False,
eval_do_concat_batches = True,
fp16_backend = 'auto',
push_to_hub_model_id = None,
push_to_hub_organization = None,
push_to_hub_token = None,
mp_parameters = '',
auto_find_batch_size = False,
full_determinism = False,
torchdynamo = None,
ray_scope = 'last',
ddp_timeout = 1800,
torch_compile = False,
torch_compile_backend = None,
torch_compile_mode = None,
include_tokens_per_second = False,
include_num_input_tokens_seen = False,
neftune_noise_alpha = None,
optim_target_modules = None,
batch_eval_metrics = False,
eval_on_start = False,
use_liger_kernel = False,
liger_kernel_config = None,
eval_use_gather_object = False,
average_tokens_across_devices = False,
model_init_kwargs = None,
max_length = None,
truncation_mode = 'keep_end',
optimize_device_cache = False,
vllm_sampling_params = None,
unsloth_num_chunks = -1,
**kwargs,
):
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!')
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!')
if output_dir is None and save_strategy == 'steps' and save_steps == 500:
output_dir = 'unsloth_training_checkpoints'
save_strategy = 'no'
super().__init__(
output_dir = output_dir,
overwrite_output_dir = overwrite_output_dir,
do_train = do_train,
do_eval = do_eval,
do_predict = do_predict,
eval_strategy = eval_strategy,
prediction_loss_only = prediction_loss_only,
per_device_train_batch_size = per_device_train_batch_size,
per_device_eval_batch_size = per_device_eval_batch_size,
per_gpu_train_batch_size = per_gpu_train_batch_size,
per_gpu_eval_batch_size = per_gpu_eval_batch_size,
gradient_accumulation_steps = gradient_accumulation_steps,
eval_accumulation_steps = eval_accumulation_steps,
eval_delay = eval_delay,
torch_empty_cache_steps = torch_empty_cache_steps,
learning_rate = learning_rate,
weight_decay = weight_decay,
adam_beta1 = adam_beta1,
adam_beta2 = adam_beta2,
adam_epsilon = adam_epsilon,
max_grad_norm = max_grad_norm,
num_train_epochs = num_train_epochs,
max_steps = max_steps,
lr_scheduler_type = lr_scheduler_type,
warmup_ratio = warmup_ratio,
warmup_steps = warmup_steps,
log_level = log_level,
log_level_replica = log_level_replica,
log_on_each_node = log_on_each_node,
logging_dir = logging_dir,
logging_strategy = logging_strategy,
logging_first_step = logging_first_step,
logging_steps = logging_steps,
logging_nan_inf_filter = logging_nan_inf_filter,
save_strategy = save_strategy,
save_steps = save_steps,
save_total_limit = save_total_limit,
save_safetensors = save_safetensors,
save_on_each_node = save_on_each_node,
save_only_model = save_only_model,
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint,
no_cuda = no_cuda,
use_cpu = use_cpu,
use_mps_device = use_mps_device,
seed = seed,
data_seed = data_seed,
jit_mode_eval = jit_mode_eval,
use_ipex = use_ipex,
bf16 = bf16,
fp16 = fp16,
fp16_opt_level = fp16_opt_level,
half_precision_backend = half_precision_backend,
bf16_full_eval = bf16_full_eval,
fp16_full_eval = fp16_full_eval,
tf32 = tf32,
local_rank = local_rank,
ddp_backend = ddp_backend,
tpu_num_cores = tpu_num_cores,
tpu_metrics_debug = tpu_metrics_debug,
debug = debug,
dataloader_drop_last = dataloader_drop_last,
eval_steps = eval_steps,
dataloader_num_workers = dataloader_num_workers,
dataloader_prefetch_factor = dataloader_prefetch_factor,
past_index = past_index,
run_name = run_name,
disable_tqdm = disable_tqdm,
remove_unused_columns = remove_unused_columns,
label_names = label_names,
load_best_model_at_end = load_best_model_at_end,
metric_for_best_model = metric_for_best_model,
greater_is_better = greater_is_better,
ignore_data_skip = ignore_data_skip,
fsdp = fsdp,
fsdp_min_num_params = fsdp_min_num_params,
fsdp_config = fsdp_config,
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap,
accelerator_config = accelerator_config,
deepspeed = deepspeed,
label_smoothing_factor = label_smoothing_factor,
optim = optim,
optim_args = optim_args,
adafactor = adafactor,
group_by_length = group_by_length,
length_column_name = length_column_name,
report_to = report_to,
ddp_find_unused_parameters = ddp_find_unused_parameters,
ddp_bucket_cap_mb = ddp_bucket_cap_mb,
ddp_broadcast_buffers = ddp_broadcast_buffers,
dataloader_pin_memory = dataloader_pin_memory,
dataloader_persistent_workers = dataloader_persistent_workers,
skip_memory_metrics = skip_memory_metrics,
use_legacy_prediction_loop = use_legacy_prediction_loop,
push_to_hub = push_to_hub,
resume_from_checkpoint = resume_from_checkpoint,
hub_model_id = hub_model_id,
hub_strategy = hub_strategy,
hub_token = hub_token,
hub_private_repo = hub_private_repo,
hub_always_push = hub_always_push,
hub_revision = hub_revision,
gradient_checkpointing = gradient_checkpointing,
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs,
include_inputs_for_metrics = include_inputs_for_metrics,
eval_do_concat_batches = eval_do_concat_batches,
fp16_backend = fp16_backend,
push_to_hub_model_id = push_to_hub_model_id,
push_to_hub_organization = push_to_hub_organization,
push_to_hub_token = push_to_hub_token,
mp_parameters = mp_parameters,
auto_find_batch_size = auto_find_batch_size,
full_determinism = full_determinism,
torchdynamo = torchdynamo,
ray_scope = ray_scope,
ddp_timeout = ddp_timeout,
torch_compile = torch_compile,
torch_compile_backend = torch_compile_backend,
torch_compile_mode = torch_compile_mode,
include_tokens_per_second = include_tokens_per_second,
include_num_input_tokens_seen = include_num_input_tokens_seen,
neftune_noise_alpha = neftune_noise_alpha,
optim_target_modules = optim_target_modules,
batch_eval_metrics = batch_eval_metrics,
eval_on_start = eval_on_start,
use_liger_kernel = use_liger_kernel,
liger_kernel_config = liger_kernel_config,
eval_use_gather_object = eval_use_gather_object,
average_tokens_across_devices = average_tokens_across_devices,
model_init_kwargs = model_init_kwargs,
max_length = max_length,
truncation_mode = truncation_mode,
optimize_device_cache = optimize_device_cache,**kwargs)
self.vllm_sampling_params = vllm_sampling_params
self.unsloth_num_chunks = unsloth_num_chunks
pass
class _UnslothIterativeSFTTrainer(Trainer):
""""""
_tag_names = ["trl", "iterative-sft"]
def __init__(
self,
model: Union[str, PreTrainedModel],
args: Optional[Union[IterativeSFTConfig, TrainingArguments]] = None,
data_collator: Optional[DataCollator] = None,
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None,
processing_class: Optional[
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin]
] = None,
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (
None,
None,
),
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None,
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None,
# Deprecated parameters
max_length: Optional[int] = None,
truncation_mode: Optional[str] = None,
optimize_device_cache: Optional[bool] = None,
):
# Handle deprecated parameters
deprecated_params = {}
if max_length is not None:
deprecated_params["max_length"] = max_length
warnings.warn(
"The `max_length` parameter is deprecated and will be removed in version 0.20. "
"Pass it through the `args` parameter using `IterativeSFTConfig(max_length=...)` instead.",
DeprecationWarning,
)
if truncation_mode is not None:
deprecated_params["truncation_mode"] = truncation_mode
warnings.warn(
"The `truncation_mode` parameter is deprecated and will be removed in version 0.20. "
"Pass it through the `args` parameter using `IterativeSFTConfig(truncation_mode=...)` instead.",
DeprecationWarning,
)
if optimize_device_cache is not None:
deprecated_params["optimize_device_cache"] = optimize_device_cache
warnings.warn(
"The `optimize_device_cache` parameter is deprecated and will be removed in version 0.20 "
"Pass it through the `args` parameter using `IterativeSFTConfig(optimize_device_cache=...)` instead.",
DeprecationWarning,
)
# Args
model_id = model if isinstance(model, str) else model.config._name_or_path
if args is None:
model_name = model_id.split("/")[-1]
args = IterativeSFTConfig(f"{model_name}-IterativeSFT")
elif isinstance(args, TrainingArguments) and not isinstance(args, IterativeSFTConfig):
dict_args = args.to_dict()
dict_args["hub_token"] = args.hub_token # to_dict hides the hub_token
dict_args.pop("push_to_hub_token")
args = IterativeSFTConfig(**dict_args)
# Update args with deprecated parameters if provided
if deprecated_params:
for key, value in deprecated_params.items():
setattr(args, key, value)
# Handle the tokenizer
if processing_class is None:
processing_class = AutoTokenizer.from_pretrained(model_id)
# Model
if args.model_init_kwargs is not None and not isinstance(model, str):
warnings.warn(
"You passed model_init_kwargs to the `IterativeSFTConfig`, but your model is already instantiated. "
"The `model_init_kwargs` will be ignored."
)
if isinstance(model, str):
model = self._create_model_from_path(model, args)
# PEFT configuration and model wrapping
if is_peft_available() and isinstance(model, PeftModel):
self.is_peft_model = True
else:
self.is_peft_model = False
self.processing_class = processing_class
self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False)
if data_collator is None:
if self.is_encoder_decoder:
self.data_collator = DataCollatorForSeq2Seq(
processing_class, label_pad_token_id=-100, pad_to_multiple_of=8
)
else:
self.data_collator = DataCollatorForLanguageModeling(self.processing_class, mlm=False)
else:
self.data_collator = data_collator
self.max_length = args.max_length
self.truncation_mode = args.truncation_mode
self.optimize_device_cache = args.optimize_device_cache
super().__init__(
model=model,
args=args,
data_collator=self.data_collator,
eval_dataset=eval_dataset,
processing_class=processing_class,
compute_metrics=compute_metrics,
optimizers=optimizers,
preprocess_logits_for_metrics=preprocess_logits_for_metrics,
)
# Add tags for models that have been loaded with the correct transformers version
if hasattr(self.model, "add_model_tags"):
self.model.add_model_tags(self._tag_names)
self.create_optimizer_and_scheduler(self.args.max_steps)
# prepare model, optimizer and lr_scheduler
self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare(
self.model, self.optimizer, self.lr_scheduler
)
self.processing_class.truncation_side = "left" if self.truncation_mode == "keep_end" else "right"
if not hasattr(self, "accelerator"):
raise AttributeError(
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`."
)
PPODecorators.optimize_device_cache = self.optimize_device_cache
def _create_model_from_path(self, model_path: str, args: IterativeSFTConfig) -> PreTrainedModel:
"""Creates a model from a path or model identifier."""
model_init_kwargs = args.model_init_kwargs or {}
return AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs)
def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor):
if attention_mask is None:
attention_mask = [torch.ones_like(ids) for ids in input_ids]
if self.is_encoder_decoder:
input_data = self.data_collator(
[
{"input_ids": ids, "attention_mask": att, "labels": lab}
for ids, att, lab in zip(input_ids, attention_mask, labels)
]
).to(self.model.device)
input_data.pop("decoder_input_ids", None) # This is directly computed inside the model
input_data["labels"][input_data["labels"] == self.processing_class.pad_token_id] = -100
else:
input_data = self.data_collator(
[{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)]
).to(self.model.device)
# truncate in case the user has provided input_ids, attention_mask and labels
if self.max_length is not None:
if self.truncation_mode == "keep_start":
input_data = {k: v[: self.max_length] for k, v in input_data.items()}
elif self.truncation_mode == "keep_end":
input_data = {k: v[-self.max_length :] for k, v in input_data.items()}
else:
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}")
return input_data
@staticmethod
def _step_safety_checker(
input_ids: list[torch.LongTensor],
attention_mask: list[torch.LongTensor],
labels: list[torch.LongTensor],
texts: list[str],
texts_labels: list[str],
):
"""
Check if the input data is valid for training.
Args:
input_ids (list[`torch.LongTensor`]):
List of tensors containing the input_ids
attention_mask (list[`torch.LongTensor`]):
List of tensors containing the attention_mask
labels (list[`torch.FloatTensor`]):
List of tensors containing the labels
texts (list[`str`]):
List of string containing the text input.
texts_labels (list[`str`]):
List of string containing the text labels.
Returns:
`tuple`: The input data.
"""
if texts is None:
if attention_mask is None:
for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
else:
for name, tensor_list in zip(
["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels]
):
if not isinstance(tensor_list, list):
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}")
if not isinstance(tensor_list[0], torch.Tensor):
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}")
else:
if not isinstance(texts, list):
raise ValueError(f"'text' must be a list of strings - got {type(texts)}")
if not isinstance(texts[0], str):
raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}")
if texts_labels is not None:
if not isinstance(texts_labels, list):
raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}")
if not isinstance(texts_labels[0], str):
raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}")
return input_ids, attention_mask, labels, texts, texts_labels
@PPODecorators.empty_device_cache()
def step(
self,
input_ids: Optional[list[torch.LongTensor]] = None,
attention_mask: Optional[list[torch.LongTensor]] = None,
labels: Optional[list[torch.LongTensor]] = None,
texts: Optional[list[str]] = None,
texts_labels: Optional[list[str]] = None,
):
"""
Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and
text_labels.
Args:
input_ids (list[`torch.LongTensor`]):
List of tensors containing the input_ids (if not provided, text will be used)
attention_mask (list[`torch.LongTensor`], , *optional*):
List of tensors containing the attention_mask
labels (list[`torch.FloatTensor`], *optional*):
List of tensors containing the labels (if set to None, will default to input_ids)
texts (list[`str`], *optional*):
List of strings containing the text input (if not provided, input_ids will directly be used)
texts_labels (list[`str`], *optional*):
List of strings containing the text labels (if set to None, will default to text)
Returns:
`dict[str, Any]`: A summary of the training statistics
"""
self.model.train()
if self.state.global_step == 0:
self.tr_loss = torch.tensor(0.0).to(self.args.device)
self._globalstep_last_logged = self.state.global_step
if input_ids is None and texts is None:
raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.")
elif input_ids is not None and texts is not None:
warnings.warn(
"Both `input_ids` and `texts` argument are provided. `input_ids` will be ignored. "
"Please provide only one of the two.",
UserWarning,
)
if labels is None and texts_labels is None and self.is_encoder_decoder:
raise ValueError(
"No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed."
)
# Convert Column to list if not already
input_ids = input_ids[:] if input_ids is not None else None
attention_mask = attention_mask[:] if attention_mask is not None else None
labels = labels[:] if labels is not None else None
texts = texts[:] if texts is not None else None
texts_labels = texts_labels[:] if texts_labels is not None else None
input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker(
input_ids, attention_mask, labels, texts, texts_labels
)
if texts is not None:
model_inputs = self.processing_class(
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
)
input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"]
if texts_labels is not None:
labels = self.processing_class(
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt"
)["input_ids"]
if labels is None:
labels = input_ids
model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels)
model_inputs_names = list(model_inputs.keys())
batch_dict = {}
batch_dict.update(model_inputs)
def collator(data):
return_dict = dict()
for key in data[0]:
if key in ["input_ids", "attention_mask", "labels"]:
return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device)
return return_dict
batch_data = Dataset.from_dict(batch_dict)
batch_data.set_format("torch")
step_dataloader = DataLoader(
batch_data,
batch_size=self.args.per_device_train_batch_size,
shuffle=True,
collate_fn=collator,
)
for _, batch in enumerate(step_dataloader):
with self.accelerator.accumulate(self.model):
model_inputs = {k: batch[k] for k in model_inputs_names}
loss = self.compute_loss(self.model, model_inputs)
if self.args.n_gpu > 1:
loss = loss.mean()
tr_loss_step = loss.detach()
self.accelerator.backward(loss)
if self.accelerator.sync_gradients and self.args.max_grad_norm is not None:
self.accelerator.clip_grad_norm_(
self.model.parameters(),
self.args.max_grad_norm,
)
self.optimizer.step()
self.optimizer.zero_grad()
if self.lr_scheduler is not None:
self.lr_scheduler.step()
self.state.global_step += 1
# update stats etc
self.tr_loss += tr_loss_step
self._maybe_log_save_evaluate()
def _maybe_log_save_evaluate(self):
# check if eval is required
if self.args.eval_steps is not None:
if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0:
self.evaluate(self.eval_dataset)
# check if logging is required
if self.args.logging_steps is not None:
if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0:
logs: dict[str, float] = {}
tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item()
# reset tr_loss to zero
self.tr_loss -= self.tr_loss
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4)
logs["learning_rate"] = self._get_learning_rate()
self._globalstep_last_logged = self.state.global_step
self.log(logs)
# Ensure the model card is saved along with the checkpoint
def _save_checkpoint(self, model, trial):
if self.args.hub_model_id is None:
model_name = Path(self.args.output_dir).name
else:
model_name = self.args.hub_model_id.split("/")[-1]
self.create_model_card(model_name=model_name)
super()._save_checkpoint(model, trial)
def create_model_card(
self,
model_name: Optional[str] = None,
dataset_name: Optional[str] = None,
tags: Union[str, list[str], None] = None,
):
"""
Creates a draft of a model card using the information available to the `Trainer`.
Args:
model_name (`str` or `None`, *optional*, defaults to `None`):
Name of the model.
dataset_name (`str` or `None`, *optional*, defaults to `None`):
Name of the dataset used for training.
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`):
Tags to be associated with the model card.
"""
if not self.is_world_process_zero():
return
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path):
base_model = self.model.config._name_or_path
else:
base_model = None
# normalize `tags` to a mutable set
if tags is None:
tags = set()
elif isinstance(tags, str):
tags = {tags}
else:
tags = set(tags)
if hasattr(self.model.config, "unsloth_version"):
tags.add("unsloth")
tags.update(self._tag_names)
model_card = generate_model_card(
base_model=base_model,
model_name=model_name,
hub_model_id=self.hub_model_id,
dataset_name=dataset_name,
tags=tags,
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None,
comet_url=get_comet_experiment_url(),
trainer_name="Iterative SFT",
)
model_card.save(os.path.join(self.args.output_dir, "README.md"))
class UnslothIterativeSFTTrainer(_UnslothIterativeSFTTrainer):
"""
The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization.
Args:
model (`Union[str, PreTrainedModel]`):
Model to be trained. Can be either:
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a
path to a *directory* containing model weights saved using
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in
`args.model_init_kwargs`.
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported.
args ([`IterativeSFTConfig`], *optional*, defaults to `None`):
Configuration for this trainer. If `None`, a default configuration is used.
data_collator (`DataCollator`, *optional*):
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`.
Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance
of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or
tokenizer.
eval_dataset (`datasets.Dataset`):
The dataset to use for evaluation.
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`):
Processing class used to process the data. If `None`, the processing class is loaded from the model's name
with [`~transformers.AutoTokenizer.from_pretrained`].
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`):
The optimizer and scheduler to use for training.
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`):
The function to use to preprocess the logits before computing the metrics.
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*):
The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to
metric values.
max_length (`int`, *optional*, deprecated):
Maximum length of the tokenized sequence. Use `args.max_length` instead.
truncation_mode (`str`, *optional*, deprecated):
The truncation mode to use. Use `args.truncation_mode` instead.
optimize_device_cache (`bool`, *optional*, deprecated):
Whether to optimize accelerator cache. Use `args.optimize_device_cache` instead.
"""
def __init__(
self,
model,
args = None,
data_collator = None,
eval_dataset = None,
processing_class = None,
preprocess_logits_for_metrics = None,
compute_metrics = None,
max_length = None,
truncation_mode = None,
optimize_device_cache = None,
**kwargs
):
if args is None: args = UnslothIterativeSFTConfig()
use_bf16 = getattr(args, 'bf16', False)
if type(use_bf16) is not bool: use_bf16 = False
use_fp16 = getattr(args, 'fp16', False)
if type(use_fp16) is not bool: use_fp16 = False
force_float32 = False
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1':
print('Unsloth: Switching to float32 training since model cannot work with float16')
force_float32 = True
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32')
dtype = getattr(model.config, 'torch_dtype', None)
if dtype is None: dtype = model.get_input_embeddings().dtype
from unsloth_zoo.utils import _get_dtype
dtype = _get_dtype(dtype)
float16 = dtype == torch.float16
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`')
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`')
if force_float32:
args.fp16 = False
args.bf16 = False
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no'
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32':
args.fp16 = float16
args.bf16 = not float16
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16'
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no':
args.eval_strategy = 'steps'
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1
ga_steps = getattr(args, 'gradient_accumulation_steps', None)
if ga_steps is not None and ga_steps > 1:
from transformers import __version__ as transformers_version
if Version(transformers_version) <= Version('4.45.2'):
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n'
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`')
if getattr(args, 'eval_strategy', 'no') != 'no':
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8)
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps
fp16_full_eval = getattr(args, 'fp16_full_eval', False)
if type(fp16_full_eval) is not bool: fp16_full_eval = False
bf16_full_eval = getattr(args, 'bf16_full_eval', False)
if type(bf16_full_eval) is not bool: bf16_full_eval = False
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False
if force_float32:
args.bf16_full_eval = False
args.fp16_full_eval = False
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16':
args.bf16_full_eval = True
args.fp16_full_eval = False
elif not bf16_full_eval and not fp16_full_eval:
args.bf16_full_eval = args.bf16
args.fp16_full_eval = args.fp16
_output_logits = False
if locals().get('compute_metrics', None) is not None: _output_logits = True
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True
if _output_logits:
os.environ['UNSLOTH_RETURN_LOGITS'] = '1'
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'):
pass
else:
model_max_seq_length = getattr(model, 'max_seq_length', None)
args_max_seq_length = getattr(args, 'max_seq_length', None)
if args_max_seq_length is None and model_max_seq_length is not None:
max_seq_length = model.max_seq_length
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length
if model is not None and hasattr(model, 'for_training'):
model.for_training()
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right'
if 'processing_class' in locals():
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right'
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right'
other_metrics = []
from unsloth_zoo.logging_utils import PatchRLStatistics
PatchRLStatistics('iterative_sft_trainer', other_metrics)
super().__init__(
model = model,
args = args,
data_collator = data_collator,
eval_dataset = eval_dataset,
processing_class = processing_class,
preprocess_logits_for_metrics = preprocess_logits_for_metrics,
compute_metrics = compute_metrics,
max_length = max_length,
truncation_mode = truncation_mode,
optimize_device_cache = optimize_device_cache,**kwargs)
if hasattr(self, 'neftune_hook_handle'):
self.neftune_hook_handle.remove()
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle
if getattr(args, 'neftune_noise_alpha', None) is not None:
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha
pass
pass