|
""" |
|
2025.7.4 |
|
2025.7.3 |
|
4.53.2 |
|
0.19.1 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
from trl.trainer.iterative_sft_trainer import (AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, DataCollator, DataCollatorForLanguageModeling, DataCollatorForSeq2Seq, DataLoader, Dataset, EvalLoopOutput, FeatureExtractionMixin, IterativeSFTConfig, IterativeSFTTrainer, Optional, PPODecorators, Path, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, Trainer, TrainingArguments, Union, generate_model_card, get_comet_experiment_url, is_peft_available, is_wandb_available, os, torch, wandb, warnings, Optional, PeftModel, PreTrainedModel, Trainer, is_peft_available, os, torch) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
@dataclass |
|
class UnslothIterativeSFTConfig(IterativeSFTConfig): |
|
""" |
|
|
|
Configuration class for the [`IterativeSFTTrainer`]. |
|
|
|
This class includes only the parameters that are specific to Iterative SFT training. For a full list of training |
|
arguments, please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this |
|
class may differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
> Parameters that control the model |
|
|
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
argument of the [`IterativeSFTTrainer`] is provided as a string. |
|
|
|
> Parameters that control the data preprocessing |
|
|
|
max_length (`int` or `None`, *optional*, defaults to `None`): |
|
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated. |
|
truncation_mode (`str`, *optional*, defaults to `"keep_end"`): |
|
The truncation mode to use, either `"keep_end"` or `"keep_start"`. |
|
optimize_device_cache (`bool`, *optional*, defaults to `False`): |
|
Whether to optimize accelerator cache for slightly more memory-efficient training. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = True, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
hub_revision = None, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
liger_kernel_config = None, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = False, |
|
model_init_kwargs = None, |
|
max_length = None, |
|
truncation_mode = 'keep_end', |
|
optimize_device_cache = False, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
hub_revision = hub_revision, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
liger_kernel_config = liger_kernel_config, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
model_init_kwargs = model_init_kwargs, |
|
max_length = max_length, |
|
truncation_mode = truncation_mode, |
|
optimize_device_cache = optimize_device_cache,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothIterativeSFTTrainer(Trainer): |
|
"""""" |
|
|
|
_tag_names = ["trl", "iterative-sft"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[str, PreTrainedModel], |
|
args: Optional[Union[IterativeSFTConfig, TrainingArguments]] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = ( |
|
None, |
|
None, |
|
), |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
compute_metrics: Optional[Callable[[EvalLoopOutput], dict]] = None, |
|
|
|
max_length: Optional[int] = None, |
|
truncation_mode: Optional[str] = None, |
|
optimize_device_cache: Optional[bool] = None, |
|
): |
|
|
|
deprecated_params = {} |
|
if max_length is not None: |
|
deprecated_params["max_length"] = max_length |
|
warnings.warn( |
|
"The `max_length` parameter is deprecated and will be removed in version 0.20. " |
|
"Pass it through the `args` parameter using `IterativeSFTConfig(max_length=...)` instead.", |
|
DeprecationWarning, |
|
) |
|
if truncation_mode is not None: |
|
deprecated_params["truncation_mode"] = truncation_mode |
|
warnings.warn( |
|
"The `truncation_mode` parameter is deprecated and will be removed in version 0.20. " |
|
"Pass it through the `args` parameter using `IterativeSFTConfig(truncation_mode=...)` instead.", |
|
DeprecationWarning, |
|
) |
|
if optimize_device_cache is not None: |
|
deprecated_params["optimize_device_cache"] = optimize_device_cache |
|
warnings.warn( |
|
"The `optimize_device_cache` parameter is deprecated and will be removed in version 0.20 " |
|
"Pass it through the `args` parameter using `IterativeSFTConfig(optimize_device_cache=...)` instead.", |
|
DeprecationWarning, |
|
) |
|
|
|
|
|
model_id = model if isinstance(model, str) else model.config._name_or_path |
|
if args is None: |
|
model_name = model_id.split("/")[-1] |
|
args = IterativeSFTConfig(f"{model_name}-IterativeSFT") |
|
elif isinstance(args, TrainingArguments) and not isinstance(args, IterativeSFTConfig): |
|
dict_args = args.to_dict() |
|
dict_args["hub_token"] = args.hub_token |
|
dict_args.pop("push_to_hub_token") |
|
args = IterativeSFTConfig(**dict_args) |
|
|
|
|
|
if deprecated_params: |
|
for key, value in deprecated_params.items(): |
|
setattr(args, key, value) |
|
|
|
|
|
if processing_class is None: |
|
processing_class = AutoTokenizer.from_pretrained(model_id) |
|
|
|
|
|
if args.model_init_kwargs is not None and not isinstance(model, str): |
|
warnings.warn( |
|
"You passed model_init_kwargs to the `IterativeSFTConfig`, but your model is already instantiated. " |
|
"The `model_init_kwargs` will be ignored." |
|
) |
|
if isinstance(model, str): |
|
model = self._create_model_from_path(model, args) |
|
|
|
|
|
if is_peft_available() and isinstance(model, PeftModel): |
|
self.is_peft_model = True |
|
else: |
|
self.is_peft_model = False |
|
|
|
self.processing_class = processing_class |
|
self.is_encoder_decoder = getattr(model.config, "is_encoder_decoder", False) |
|
|
|
if data_collator is None: |
|
if self.is_encoder_decoder: |
|
self.data_collator = DataCollatorForSeq2Seq( |
|
processing_class, label_pad_token_id=-100, pad_to_multiple_of=8 |
|
) |
|
else: |
|
self.data_collator = DataCollatorForLanguageModeling(self.processing_class, mlm=False) |
|
else: |
|
self.data_collator = data_collator |
|
|
|
self.max_length = args.max_length |
|
self.truncation_mode = args.truncation_mode |
|
self.optimize_device_cache = args.optimize_device_cache |
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=self.data_collator, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
compute_metrics=compute_metrics, |
|
optimizers=optimizers, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
self.create_optimizer_and_scheduler(self.args.max_steps) |
|
|
|
|
|
self.model, self.optimizer, self.lr_scheduler = self.accelerator.prepare( |
|
self.model, self.optimizer, self.lr_scheduler |
|
) |
|
|
|
self.processing_class.truncation_side = "left" if self.truncation_mode == "keep_end" else "right" |
|
|
|
if not hasattr(self, "accelerator"): |
|
raise AttributeError( |
|
"Your `Trainer` does not have an `accelerator` object. Consider upgrading `transformers`." |
|
) |
|
|
|
PPODecorators.optimize_device_cache = self.optimize_device_cache |
|
|
|
def _create_model_from_path(self, model_path: str, args: IterativeSFTConfig) -> PreTrainedModel: |
|
"""Creates a model from a path or model identifier.""" |
|
model_init_kwargs = args.model_init_kwargs or {} |
|
return AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs) |
|
|
|
def prepare_model_inputs(self, input_ids: torch.Tensor, attention_mask: torch.Tensor, labels: torch.Tensor): |
|
if attention_mask is None: |
|
attention_mask = [torch.ones_like(ids) for ids in input_ids] |
|
|
|
if self.is_encoder_decoder: |
|
input_data = self.data_collator( |
|
[ |
|
{"input_ids": ids, "attention_mask": att, "labels": lab} |
|
for ids, att, lab in zip(input_ids, attention_mask, labels) |
|
] |
|
).to(self.model.device) |
|
|
|
input_data.pop("decoder_input_ids", None) |
|
|
|
input_data["labels"][input_data["labels"] == self.processing_class.pad_token_id] = -100 |
|
|
|
else: |
|
input_data = self.data_collator( |
|
[{"input_ids": ids, "attention_mask": att} for ids, att in zip(input_ids, attention_mask)] |
|
).to(self.model.device) |
|
|
|
|
|
if self.max_length is not None: |
|
if self.truncation_mode == "keep_start": |
|
input_data = {k: v[: self.max_length] for k, v in input_data.items()} |
|
elif self.truncation_mode == "keep_end": |
|
input_data = {k: v[-self.max_length :] for k, v in input_data.items()} |
|
else: |
|
raise ValueError(f"Unknown truncation mode: {self.truncation_mode}") |
|
|
|
return input_data |
|
|
|
@staticmethod |
|
def _step_safety_checker( |
|
input_ids: list[torch.LongTensor], |
|
attention_mask: list[torch.LongTensor], |
|
labels: list[torch.LongTensor], |
|
texts: list[str], |
|
texts_labels: list[str], |
|
): |
|
""" |
|
Check if the input data is valid for training. |
|
|
|
Args: |
|
input_ids (list[`torch.LongTensor`]): |
|
List of tensors containing the input_ids |
|
attention_mask (list[`torch.LongTensor`]): |
|
List of tensors containing the attention_mask |
|
labels (list[`torch.FloatTensor`]): |
|
List of tensors containing the labels |
|
texts (list[`str`]): |
|
List of string containing the text input. |
|
texts_labels (list[`str`]): |
|
List of string containing the text labels. |
|
|
|
Returns: |
|
`tuple`: The input data. |
|
""" |
|
if texts is None: |
|
if attention_mask is None: |
|
for name, tensor_list in zip(["input_ids", "labels"], [input_ids, labels]): |
|
if not isinstance(tensor_list, list): |
|
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") |
|
if not isinstance(tensor_list[0], torch.Tensor): |
|
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") |
|
else: |
|
for name, tensor_list in zip( |
|
["input_ids", "attention_mask", "labels"], [input_ids, attention_mask, labels] |
|
): |
|
if not isinstance(tensor_list, list): |
|
raise ValueError(f"{name} must be a list of tensors - got {type(tensor_list)}") |
|
if not isinstance(tensor_list[0], torch.Tensor): |
|
raise ValueError(f"Elements in {name} must be tensors - got {type(tensor_list[0])}") |
|
else: |
|
if not isinstance(texts, list): |
|
raise ValueError(f"'text' must be a list of strings - got {type(texts)}") |
|
if not isinstance(texts[0], str): |
|
raise ValueError(f"Elements in 'text' must be strings - got {type(texts[0])}") |
|
if texts_labels is not None: |
|
if not isinstance(texts_labels, list): |
|
raise ValueError(f"'text_labels' must be a list of strings - got {type(texts_labels)}") |
|
if not isinstance(texts_labels[0], str): |
|
raise ValueError(f"Elements in 'text_labels' must be strings - got {type(texts_labels[0])}") |
|
|
|
return input_ids, attention_mask, labels, texts, texts_labels |
|
|
|
@PPODecorators.empty_device_cache() |
|
def step( |
|
self, |
|
input_ids: Optional[list[torch.LongTensor]] = None, |
|
attention_mask: Optional[list[torch.LongTensor]] = None, |
|
labels: Optional[list[torch.LongTensor]] = None, |
|
texts: Optional[list[str]] = None, |
|
texts_labels: Optional[list[str]] = None, |
|
): |
|
""" |
|
Run an optimisation step given a list of input_ids, attention_mask, and labels or a list of text and |
|
text_labels. |
|
|
|
Args: |
|
input_ids (list[`torch.LongTensor`]): |
|
List of tensors containing the input_ids (if not provided, text will be used) |
|
attention_mask (list[`torch.LongTensor`], , *optional*): |
|
List of tensors containing the attention_mask |
|
labels (list[`torch.FloatTensor`], *optional*): |
|
List of tensors containing the labels (if set to None, will default to input_ids) |
|
texts (list[`str`], *optional*): |
|
List of strings containing the text input (if not provided, input_ids will directly be used) |
|
texts_labels (list[`str`], *optional*): |
|
List of strings containing the text labels (if set to None, will default to text) |
|
|
|
Returns: |
|
`dict[str, Any]`: A summary of the training statistics |
|
""" |
|
self.model.train() |
|
|
|
if self.state.global_step == 0: |
|
self.tr_loss = torch.tensor(0.0).to(self.args.device) |
|
self._globalstep_last_logged = self.state.global_step |
|
|
|
if input_ids is None and texts is None: |
|
raise ValueError("Step should include `input_ids` or `texts` as keyword arguments.") |
|
elif input_ids is not None and texts is not None: |
|
warnings.warn( |
|
"Both `input_ids` and `texts` argument are provided. `input_ids` will be ignored. " |
|
"Please provide only one of the two.", |
|
UserWarning, |
|
) |
|
|
|
if labels is None and texts_labels is None and self.is_encoder_decoder: |
|
raise ValueError( |
|
"No 'labels' or 'text_labels' are provided. When using an encoder-decoder architecture, 'labels' or 'text_labels' must be passed." |
|
) |
|
|
|
|
|
input_ids = input_ids[:] if input_ids is not None else None |
|
attention_mask = attention_mask[:] if attention_mask is not None else None |
|
labels = labels[:] if labels is not None else None |
|
texts = texts[:] if texts is not None else None |
|
texts_labels = texts_labels[:] if texts_labels is not None else None |
|
|
|
input_ids, attention_mask, labels, texts, texts_labels = self._step_safety_checker( |
|
input_ids, attention_mask, labels, texts, texts_labels |
|
) |
|
|
|
if texts is not None: |
|
model_inputs = self.processing_class( |
|
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" |
|
) |
|
|
|
input_ids, attention_mask = model_inputs["input_ids"], model_inputs["attention_mask"] |
|
|
|
if texts_labels is not None: |
|
labels = self.processing_class( |
|
texts, max_length=self.max_length, truncation=True, padding=True, return_tensors="pt" |
|
)["input_ids"] |
|
|
|
if labels is None: |
|
labels = input_ids |
|
|
|
model_inputs = self.prepare_model_inputs(input_ids, attention_mask, labels) |
|
|
|
model_inputs_names = list(model_inputs.keys()) |
|
|
|
batch_dict = {} |
|
batch_dict.update(model_inputs) |
|
|
|
def collator(data): |
|
return_dict = dict() |
|
for key in data[0]: |
|
if key in ["input_ids", "attention_mask", "labels"]: |
|
return_dict[key] = torch.stack([d[key] for d in data]).to(self.model.device) |
|
return return_dict |
|
|
|
batch_data = Dataset.from_dict(batch_dict) |
|
batch_data.set_format("torch") |
|
|
|
step_dataloader = DataLoader( |
|
batch_data, |
|
batch_size=self.args.per_device_train_batch_size, |
|
shuffle=True, |
|
collate_fn=collator, |
|
) |
|
|
|
for _, batch in enumerate(step_dataloader): |
|
with self.accelerator.accumulate(self.model): |
|
model_inputs = {k: batch[k] for k in model_inputs_names} |
|
loss = self.compute_loss(self.model, model_inputs) |
|
|
|
if self.args.n_gpu > 1: |
|
loss = loss.mean() |
|
|
|
tr_loss_step = loss.detach() |
|
|
|
self.accelerator.backward(loss) |
|
|
|
if self.accelerator.sync_gradients and self.args.max_grad_norm is not None: |
|
self.accelerator.clip_grad_norm_( |
|
self.model.parameters(), |
|
self.args.max_grad_norm, |
|
) |
|
|
|
self.optimizer.step() |
|
self.optimizer.zero_grad() |
|
if self.lr_scheduler is not None: |
|
self.lr_scheduler.step() |
|
|
|
self.state.global_step += 1 |
|
|
|
|
|
self.tr_loss += tr_loss_step |
|
|
|
self._maybe_log_save_evaluate() |
|
|
|
def _maybe_log_save_evaluate(self): |
|
|
|
if self.args.eval_steps is not None: |
|
if self.state.global_step % self.args.eval_steps == 0 and self.state.global_step != 0: |
|
self.evaluate(self.eval_dataset) |
|
|
|
|
|
if self.args.logging_steps is not None: |
|
if self.state.global_step % self.args.logging_steps == 0 and self.state.global_step != 0: |
|
logs: dict[str, float] = {} |
|
|
|
tr_loss_scalar = self._nested_gather(self.tr_loss).mean().item() |
|
|
|
|
|
self.tr_loss -= self.tr_loss |
|
|
|
logs["loss"] = round(tr_loss_scalar / (self.state.global_step - self._globalstep_last_logged), 4) |
|
logs["learning_rate"] = self._get_learning_rate() |
|
|
|
self._globalstep_last_logged = self.state.global_step |
|
|
|
self.log(logs) |
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
if self.args.hub_model_id is None: |
|
model_name = Path(self.args.output_dir).name |
|
else: |
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
self.create_model_card(model_name=model_name) |
|
super()._save_checkpoint(model, trial) |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
|
|
if tags is None: |
|
tags = set() |
|
elif isinstance(tags, str): |
|
tags = {tags} |
|
else: |
|
tags = set(tags) |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.add("unsloth") |
|
|
|
tags.update(self._tag_names) |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=tags, |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="Iterative SFT", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothIterativeSFTTrainer(_UnslothIterativeSFTTrainer): |
|
""" |
|
|
|
The IterativeSFTTrainer can be used to finetune models with methods that requires some steps between optimization. |
|
|
|
Args: |
|
model (`Union[str, PreTrainedModel]`): |
|
Model to be trained. Can be either: |
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
`args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
args ([`IterativeSFTConfig`], *optional*, defaults to `None`): |
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
data_collator (`DataCollator`, *optional*): |
|
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`. |
|
Will default to [`~transformers.default_data_collator`] if no `processing_class` is provided, an instance |
|
of [`~transformers.DataCollatorWithPadding`] otherwise if the processing_class is a feature extractor or |
|
tokenizer. |
|
eval_dataset (`datasets.Dataset`): |
|
The dataset to use for evaluation. |
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): |
|
Processing class used to process the data. If `None`, the processing class is loaded from the model's name |
|
with [`~transformers.AutoTokenizer.from_pretrained`]. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): |
|
The optimizer and scheduler to use for training. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): |
|
The function to use to preprocess the logits before computing the metrics. |
|
compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): |
|
The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to |
|
metric values. |
|
max_length (`int`, *optional*, deprecated): |
|
Maximum length of the tokenized sequence. Use `args.max_length` instead. |
|
truncation_mode (`str`, *optional*, deprecated): |
|
The truncation mode to use. Use `args.truncation_mode` instead. |
|
optimize_device_cache (`bool`, *optional*, deprecated): |
|
Whether to optimize accelerator cache. Use `args.optimize_device_cache` instead. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
args = None, |
|
data_collator = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
preprocess_logits_for_metrics = None, |
|
compute_metrics = None, |
|
max_length = None, |
|
truncation_mode = None, |
|
optimize_device_cache = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothIterativeSFTConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
if type(use_bf16) is not bool: use_bf16 = False |
|
use_fp16 = getattr(args, 'fp16', False) |
|
if type(use_fp16) is not bool: use_fp16 = False |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('iterative_sft_trainer', other_metrics) |
|
|
|
super().__init__( |
|
model = model, |
|
args = args, |
|
data_collator = data_collator, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
compute_metrics = compute_metrics, |
|
max_length = max_length, |
|
truncation_mode = truncation_mode, |
|
optimize_device_cache = optimize_device_cache,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|