|
""" |
|
2025.7.4 |
|
2025.7.3 |
|
4.53.2 |
|
0.19.1 |
|
__UNSLOTH_VERSIONING__ |
|
""" |
|
from torch import Tensor |
|
import torch |
|
import torch.nn as nn |
|
from torch.nn import functional as F |
|
from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable |
|
from trl.trainer.sft_trainer import (Any, AutoModelForCausalLM, AutoTokenizer, BaseImageProcessor, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, EvalPrediction, FeatureExtractionMixin, IterableDataset, Optional, Path, PeftConfig, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SFTConfig, SFTTrainer, Trainer, TrainerCallback, TrainingArguments, Union, clone_chat_template, contextlib, dataclass, dataclasses, defaultdict, generate_model_card, get_act_offloading_ctx_manager, get_comet_experiment_url, get_peft_model, is_conversational, is_peft_available, is_wandb_available, nn, os, pad, peft, peft_module_casting_to_bf16, prepare_model_for_kbit_training, torch, version, wandb, warnings, Callable, ConstantLengthDataset, DataCollator, DataCollatorForLanguageModeling, Dataset, IterableDataset, Optional, Union, os, pad, Optional, PeftModel, PreTrainedModel, Trainer, is_peft_available, os, peft, torch, os) |
|
|
|
|
|
import os |
|
from typing import * |
|
from dataclasses import dataclass, field |
|
from packaging.version import Version |
|
import torch |
|
import numpy as np |
|
from contextlib import nullcontext |
|
from torch.nn import functional as F |
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling |
|
|
|
torch_compile_options = { |
|
"epilogue_fusion" : True, |
|
"max_autotune" : False, |
|
"shape_padding" : True, |
|
"trace.enabled" : False, |
|
"triton.cudagraphs" : False, |
|
} |
|
|
|
@torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) |
|
def selective_log_softmax(logits, index): |
|
logits = logits.to(torch.float32) |
|
selected_logits = torch.gather(logits, dim = -1, index = index.unsqueeze(-1)).squeeze(-1) |
|
|
|
|
|
logsumexp_values = torch.logsumexp(logits, dim = -1) |
|
per_token_logps = selected_logits - logsumexp_values |
|
return per_token_logps |
|
@dataclass |
|
class UnslothSFTConfig(SFTConfig): |
|
""" |
|
|
|
Configuration class for the [`SFTTrainer`]. |
|
|
|
This class includes only the parameters that are specific to SFT training. For a full list of training arguments, |
|
please refer to the [`~transformers.TrainingArguments`] documentation. Note that default values in this class may |
|
differ from those in [`~transformers.TrainingArguments`]. |
|
|
|
Using [`~transformers.HfArgumentParser`] we can turn this class into |
|
[argparse](https://docs.python.org/3/library/argparse#module-argparse) arguments that can be specified on the |
|
command line. |
|
|
|
Parameters: |
|
> Parameters that control the model |
|
|
|
model_init_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Keyword arguments for [`~transformers.AutoModelForCausalLM.from_pretrained`], used when the `model` |
|
argument of the [`SFTTrainer`] is provided as a string. |
|
chat_template_path (`str` or `None`, *optional*, defaults to `None`): |
|
If specified, sets the model's chat template. This can either be the path to a tokenizer (local directory |
|
or Hugging Face Hub model) or a direct path to a Jinja template file. When using a Jinja file, you must |
|
ensure that any special tokens referenced in the template are added to the tokenizer and that the model's |
|
embedding layer is resized accordingly. |
|
|
|
> Parameters that control the data preprocessing |
|
|
|
dataset_text_field (`str`, *optional*, defaults to `"text"`): |
|
Name of the column that contains text data in the dataset. |
|
dataset_kwargs (`dict[str, Any]` or `None`, *optional*, defaults to `None`): |
|
Dictionary of optional keyword arguments for the dataset preparation. The only supported key is |
|
`skip_prepare_dataset`. |
|
dataset_num_proc (`int` or `None`, *optional*, defaults to `None`): |
|
Number of processes to use for processing the dataset. |
|
eos_token (`str` or `None`, *optional*, defaults to `None`): |
|
Token used to indicate the end of a turn or sequence. If `None`, it defaults to |
|
`processing_class.eos_token`. |
|
pad_token (`int` or `None`, *optional*, defaults to `None`): |
|
Token used for padding. If `None`, it defaults to `processing_class.pad_token`, or if that is also `None`, |
|
it falls back to `processing_class.eos_token`. |
|
max_length (`int` or `None`, *optional*, defaults to `1024`): |
|
Maximum length of the tokenized sequence. Sequences longer than `max_length` are truncated from the right. |
|
If `None`, no truncation is applied. When packing is enabled, this value sets the sequence length. |
|
packing (`bool`, *optional*, defaults to `False`): |
|
Whether to group multiple sequences into fixed-length blocks to improve computational efficiency and reduce |
|
padding. Uses `max_length` to define sequence length. |
|
packing_strategy (`str`, *optional*, defaults to `"ffd"`): |
|
Strategy for packing sequences. Can be either `"ffd"` (first-fit decreasing, default), or `"wrapped"`. |
|
padding_free (`bool`, *optional*, defaults to `False`): |
|
Whether to perform forward passes without padding by flattening all sequences in the batch into a single |
|
continuous sequence. This reduces memory usage by eliminating padding overhead. Currently, this is only |
|
supported with the `flash_attention_2` attention implementation, which can efficiently handle the flattened |
|
batch structure. When packing is enabled with strategy `"ffd"`, padding-free is enabled, regardless of the |
|
value of this parameter. |
|
pad_to_multiple_of (`int` or `None`, *optional*, defaults to `None`): |
|
If set, the sequences will be padded to a multiple of this value. |
|
eval_packing (`bool` or `None`, *optional*, defaults to `None`): |
|
Whether to pack the eval dataset. If `None`, uses the same value as `packing`. |
|
|
|
> Parameters that control the training |
|
|
|
completion_only_loss (`bool` or `None`, *optional*, defaults to `None`): |
|
Whether to compute loss only on the completion part of the sequence. If set to `True`, loss is computed |
|
only on the completion, which is supported only for [prompt-completion](#prompt-completion) datasets. If |
|
`False`, loss is computed on the entire sequence. If `None` (default), the behavior depends on the dataset: |
|
loss is computed on the completion for [prompt-completion](#prompt-completion) datasets, and on the full |
|
sequence for [language modeling](#language-modeling) datasets. |
|
assistant_only_loss (`bool`, *optional*, defaults to `False`): |
|
Whether to compute loss only on the assistant part of the sequence. If set to `True`, loss is computed |
|
only on the assistant responses, which is supported only for [conversational](#conversational) datasets. If `False`, |
|
loss is computed on the entire sequence. |
|
activation_offloading (`bool`, *optional*, defaults to `False`): |
|
Whether to offload the activations to the CPU. |
|
|
|
""" |
|
vllm_sampling_params: Optional[Any] = field( |
|
default = None, |
|
metadata = {'help': 'vLLM SamplingParams'}, |
|
) |
|
unsloth_num_chunks : Optional[int] = field( |
|
default = -1, |
|
metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, |
|
) |
|
def __init__( |
|
self, |
|
output_dir = None, |
|
overwrite_output_dir = None, |
|
do_train = False, |
|
do_eval = False, |
|
do_predict = False, |
|
eval_strategy = 'no', |
|
prediction_loss_only = False, |
|
per_device_train_batch_size = 4, |
|
per_device_eval_batch_size = 4, |
|
per_gpu_train_batch_size = None, |
|
per_gpu_eval_batch_size = None, |
|
gradient_accumulation_steps = 2, |
|
eval_accumulation_steps = 2, |
|
eval_delay = 0, |
|
torch_empty_cache_steps = 250, |
|
learning_rate = 5e-05, |
|
weight_decay = 0.01, |
|
adam_beta1 = 0.9, |
|
adam_beta2 = 0.999, |
|
adam_epsilon = 1e-08, |
|
max_grad_norm = 1.0, |
|
num_train_epochs = 3.0, |
|
max_steps = -1, |
|
lr_scheduler_type = 'linear', |
|
warmup_ratio = 0.1, |
|
warmup_steps = 0, |
|
log_level = 'passive', |
|
log_level_replica = 'warning', |
|
log_on_each_node = True, |
|
logging_dir = None, |
|
logging_strategy = 'steps', |
|
logging_first_step = False, |
|
logging_steps = 1, |
|
logging_nan_inf_filter = False, |
|
save_strategy = 'steps', |
|
save_steps = 500, |
|
save_total_limit = None, |
|
save_safetensors = True, |
|
save_on_each_node = False, |
|
save_only_model = False, |
|
restore_callback_states_from_checkpoint = False, |
|
no_cuda = False, |
|
use_cpu = False, |
|
use_mps_device = False, |
|
seed = 3407, |
|
data_seed = 3407, |
|
jit_mode_eval = False, |
|
use_ipex = False, |
|
bf16 = False, |
|
fp16 = False, |
|
fp16_opt_level = 'O1', |
|
half_precision_backend = 'auto', |
|
bf16_full_eval = False, |
|
fp16_full_eval = False, |
|
tf32 = None, |
|
local_rank = -1, |
|
ddp_backend = None, |
|
tpu_num_cores = None, |
|
tpu_metrics_debug = False, |
|
debug = '', |
|
dataloader_drop_last = False, |
|
eval_steps = None, |
|
dataloader_num_workers = 0, |
|
dataloader_prefetch_factor = None, |
|
past_index = -1, |
|
run_name = None, |
|
disable_tqdm = None, |
|
remove_unused_columns = True, |
|
label_names = None, |
|
load_best_model_at_end = False, |
|
metric_for_best_model = None, |
|
greater_is_better = None, |
|
ignore_data_skip = False, |
|
fsdp = '', |
|
fsdp_min_num_params = 0, |
|
fsdp_config = None, |
|
fsdp_transformer_layer_cls_to_wrap = None, |
|
accelerator_config = None, |
|
deepspeed = None, |
|
label_smoothing_factor = 0.0, |
|
optim = 'adamw_8bit', |
|
optim_args = None, |
|
adafactor = False, |
|
group_by_length = False, |
|
length_column_name = 'length', |
|
report_to = None, |
|
ddp_find_unused_parameters = None, |
|
ddp_bucket_cap_mb = None, |
|
ddp_broadcast_buffers = None, |
|
dataloader_pin_memory = True, |
|
dataloader_persistent_workers = False, |
|
skip_memory_metrics = True, |
|
use_legacy_prediction_loop = False, |
|
push_to_hub = False, |
|
resume_from_checkpoint = None, |
|
hub_model_id = None, |
|
hub_strategy = 'every_save', |
|
hub_token = None, |
|
hub_private_repo = None, |
|
hub_always_push = False, |
|
hub_revision = None, |
|
gradient_checkpointing = False, |
|
gradient_checkpointing_kwargs = None, |
|
include_inputs_for_metrics = False, |
|
eval_do_concat_batches = True, |
|
fp16_backend = 'auto', |
|
push_to_hub_model_id = None, |
|
push_to_hub_organization = None, |
|
push_to_hub_token = None, |
|
mp_parameters = '', |
|
auto_find_batch_size = False, |
|
full_determinism = False, |
|
torchdynamo = None, |
|
ray_scope = 'last', |
|
ddp_timeout = 1800, |
|
torch_compile = False, |
|
torch_compile_backend = None, |
|
torch_compile_mode = None, |
|
include_tokens_per_second = False, |
|
include_num_input_tokens_seen = False, |
|
neftune_noise_alpha = None, |
|
optim_target_modules = None, |
|
batch_eval_metrics = False, |
|
eval_on_start = False, |
|
use_liger_kernel = False, |
|
liger_kernel_config = None, |
|
eval_use_gather_object = False, |
|
average_tokens_across_devices = True, |
|
model_init_kwargs = None, |
|
chat_template_path = None, |
|
dataset_text_field = 'text', |
|
dataset_kwargs = None, |
|
dataset_num_proc = None, |
|
eos_token = None, |
|
pad_token = None, |
|
max_length = 1024, |
|
packing = False, |
|
packing_strategy = 'ffd', |
|
padding_free = False, |
|
pad_to_multiple_of = None, |
|
eval_packing = None, |
|
completion_only_loss = None, |
|
assistant_only_loss = False, |
|
activation_offloading = False, |
|
max_seq_length = None, |
|
vllm_sampling_params = None, |
|
unsloth_num_chunks = -1, |
|
**kwargs, |
|
): |
|
if learning_rate < 1e-7: raise FloatingPointError(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') |
|
if learning_rate > 1: raise OverflowError(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') |
|
if output_dir is None and save_strategy == 'steps' and save_steps == 500: |
|
output_dir = 'unsloth_training_checkpoints' |
|
save_strategy = 'no' |
|
if dataset_num_proc is None: |
|
from multiprocessing import cpu_count |
|
dataset_num_proc = cpu_count() |
|
|
|
super().__init__( |
|
output_dir = output_dir, |
|
overwrite_output_dir = overwrite_output_dir, |
|
do_train = do_train, |
|
do_eval = do_eval, |
|
do_predict = do_predict, |
|
eval_strategy = eval_strategy, |
|
prediction_loss_only = prediction_loss_only, |
|
per_device_train_batch_size = per_device_train_batch_size, |
|
per_device_eval_batch_size = per_device_eval_batch_size, |
|
per_gpu_train_batch_size = per_gpu_train_batch_size, |
|
per_gpu_eval_batch_size = per_gpu_eval_batch_size, |
|
gradient_accumulation_steps = gradient_accumulation_steps, |
|
eval_accumulation_steps = eval_accumulation_steps, |
|
eval_delay = eval_delay, |
|
torch_empty_cache_steps = torch_empty_cache_steps, |
|
learning_rate = learning_rate, |
|
weight_decay = weight_decay, |
|
adam_beta1 = adam_beta1, |
|
adam_beta2 = adam_beta2, |
|
adam_epsilon = adam_epsilon, |
|
max_grad_norm = max_grad_norm, |
|
num_train_epochs = num_train_epochs, |
|
max_steps = max_steps, |
|
lr_scheduler_type = lr_scheduler_type, |
|
warmup_ratio = warmup_ratio, |
|
warmup_steps = warmup_steps, |
|
log_level = log_level, |
|
log_level_replica = log_level_replica, |
|
log_on_each_node = log_on_each_node, |
|
logging_dir = logging_dir, |
|
logging_strategy = logging_strategy, |
|
logging_first_step = logging_first_step, |
|
logging_steps = logging_steps, |
|
logging_nan_inf_filter = logging_nan_inf_filter, |
|
save_strategy = save_strategy, |
|
save_steps = save_steps, |
|
save_total_limit = save_total_limit, |
|
save_safetensors = save_safetensors, |
|
save_on_each_node = save_on_each_node, |
|
save_only_model = save_only_model, |
|
restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, |
|
no_cuda = no_cuda, |
|
use_cpu = use_cpu, |
|
use_mps_device = use_mps_device, |
|
seed = seed, |
|
data_seed = data_seed, |
|
jit_mode_eval = jit_mode_eval, |
|
use_ipex = use_ipex, |
|
bf16 = bf16, |
|
fp16 = fp16, |
|
fp16_opt_level = fp16_opt_level, |
|
half_precision_backend = half_precision_backend, |
|
bf16_full_eval = bf16_full_eval, |
|
fp16_full_eval = fp16_full_eval, |
|
tf32 = tf32, |
|
local_rank = local_rank, |
|
ddp_backend = ddp_backend, |
|
tpu_num_cores = tpu_num_cores, |
|
tpu_metrics_debug = tpu_metrics_debug, |
|
debug = debug, |
|
dataloader_drop_last = dataloader_drop_last, |
|
eval_steps = eval_steps, |
|
dataloader_num_workers = dataloader_num_workers, |
|
dataloader_prefetch_factor = dataloader_prefetch_factor, |
|
past_index = past_index, |
|
run_name = run_name, |
|
disable_tqdm = disable_tqdm, |
|
remove_unused_columns = remove_unused_columns, |
|
label_names = label_names, |
|
load_best_model_at_end = load_best_model_at_end, |
|
metric_for_best_model = metric_for_best_model, |
|
greater_is_better = greater_is_better, |
|
ignore_data_skip = ignore_data_skip, |
|
fsdp = fsdp, |
|
fsdp_min_num_params = fsdp_min_num_params, |
|
fsdp_config = fsdp_config, |
|
fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, |
|
accelerator_config = accelerator_config, |
|
deepspeed = deepspeed, |
|
label_smoothing_factor = label_smoothing_factor, |
|
optim = optim, |
|
optim_args = optim_args, |
|
adafactor = adafactor, |
|
group_by_length = group_by_length, |
|
length_column_name = length_column_name, |
|
report_to = report_to, |
|
ddp_find_unused_parameters = ddp_find_unused_parameters, |
|
ddp_bucket_cap_mb = ddp_bucket_cap_mb, |
|
ddp_broadcast_buffers = ddp_broadcast_buffers, |
|
dataloader_pin_memory = dataloader_pin_memory, |
|
dataloader_persistent_workers = dataloader_persistent_workers, |
|
skip_memory_metrics = skip_memory_metrics, |
|
use_legacy_prediction_loop = use_legacy_prediction_loop, |
|
push_to_hub = push_to_hub, |
|
resume_from_checkpoint = resume_from_checkpoint, |
|
hub_model_id = hub_model_id, |
|
hub_strategy = hub_strategy, |
|
hub_token = hub_token, |
|
hub_private_repo = hub_private_repo, |
|
hub_always_push = hub_always_push, |
|
hub_revision = hub_revision, |
|
gradient_checkpointing = gradient_checkpointing, |
|
gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, |
|
include_inputs_for_metrics = include_inputs_for_metrics, |
|
eval_do_concat_batches = eval_do_concat_batches, |
|
fp16_backend = fp16_backend, |
|
push_to_hub_model_id = push_to_hub_model_id, |
|
push_to_hub_organization = push_to_hub_organization, |
|
push_to_hub_token = push_to_hub_token, |
|
mp_parameters = mp_parameters, |
|
auto_find_batch_size = auto_find_batch_size, |
|
full_determinism = full_determinism, |
|
torchdynamo = torchdynamo, |
|
ray_scope = ray_scope, |
|
ddp_timeout = ddp_timeout, |
|
torch_compile = torch_compile, |
|
torch_compile_backend = torch_compile_backend, |
|
torch_compile_mode = torch_compile_mode, |
|
include_tokens_per_second = include_tokens_per_second, |
|
include_num_input_tokens_seen = include_num_input_tokens_seen, |
|
neftune_noise_alpha = neftune_noise_alpha, |
|
optim_target_modules = optim_target_modules, |
|
batch_eval_metrics = batch_eval_metrics, |
|
eval_on_start = eval_on_start, |
|
use_liger_kernel = use_liger_kernel, |
|
liger_kernel_config = liger_kernel_config, |
|
eval_use_gather_object = eval_use_gather_object, |
|
average_tokens_across_devices = average_tokens_across_devices, |
|
model_init_kwargs = model_init_kwargs, |
|
chat_template_path = chat_template_path, |
|
dataset_text_field = dataset_text_field, |
|
dataset_kwargs = dataset_kwargs, |
|
dataset_num_proc = dataset_num_proc, |
|
eos_token = eos_token, |
|
pad_token = pad_token, |
|
max_length = max_length, |
|
packing = packing, |
|
packing_strategy = packing_strategy, |
|
padding_free = padding_free, |
|
pad_to_multiple_of = pad_to_multiple_of, |
|
eval_packing = eval_packing, |
|
completion_only_loss = completion_only_loss, |
|
assistant_only_loss = assistant_only_loss, |
|
activation_offloading = activation_offloading, |
|
max_seq_length = max_seq_length,**kwargs) |
|
self.vllm_sampling_params = vllm_sampling_params |
|
self.unsloth_num_chunks = unsloth_num_chunks |
|
pass |
|
|
|
class _UnslothSFTTrainer(Trainer): |
|
"""""" |
|
|
|
_tag_names = ["trl", "sft"] |
|
|
|
def __init__( |
|
self, |
|
model: Union[str, nn.Module, PreTrainedModel], |
|
args: Optional[Union[SFTConfig, TrainingArguments]] = None, |
|
data_collator: Optional[DataCollator] = None, |
|
train_dataset: Optional[Union[Dataset, IterableDataset]] = None, |
|
eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, |
|
processing_class: Optional[ |
|
Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] |
|
] = None, |
|
compute_loss_func: Optional[Callable] = None, |
|
compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, |
|
callbacks: Optional[list[TrainerCallback]] = None, |
|
optimizers: tuple[Optional[torch.optim.Optimizer], Optional[torch.optim.lr_scheduler.LambdaLR]] = (None, None), |
|
optimizer_cls_and_kwargs: Optional[tuple[type[torch.optim.Optimizer], dict[str, Any]]] = None, |
|
preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, |
|
peft_config: Optional["PeftConfig"] = None, |
|
formatting_func: Optional[Callable[[dict], str]] = None, |
|
): |
|
|
|
model_id = model if isinstance(model, str) else model.config._name_or_path |
|
if args is None: |
|
model_name = model_id.split("/")[-1] |
|
args = SFTConfig(f"{model_name}-SFT") |
|
elif isinstance(args, TrainingArguments) and not isinstance(args, SFTConfig): |
|
dict_args = args.to_dict() |
|
dict_args["hub_token"] = args.hub_token |
|
dict_args.pop("push_to_hub_token") |
|
args = SFTConfig(**dict_args) |
|
|
|
|
|
if processing_class is None: |
|
processing_class = AutoTokenizer.from_pretrained(model_id) |
|
|
|
if args.eos_token is not None: |
|
eos_token = args.eos_token |
|
eos_token_id = processing_class.convert_tokens_to_ids(eos_token) |
|
if eos_token_id is None: |
|
raise ValueError( |
|
f"The specified `eos_token` ('{eos_token}') is not found in the vocabulary of the given " |
|
f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `eos_token` exists " |
|
"in the vocabulary before using it as an EOS token." |
|
) |
|
processing_class.eos_token_id = eos_token_id |
|
|
|
|
|
if args.model_init_kwargs is not None and not isinstance(model, str): |
|
warnings.warn( |
|
"You passed model_init_kwargs to the `SFTConfig`, but your model is already instantiated. " |
|
"The `model_init_kwargs` will be ignored." |
|
) |
|
if isinstance(model, str): |
|
model = self._create_model_from_path(model, args) |
|
|
|
if args.chat_template_path is not None: |
|
if os.path.isfile(args.chat_template_path) and args.chat_template_path.endswith((".jinja", ".j2")): |
|
with open(args.chat_template_path, encoding="utf-8") as chat_template_file: |
|
processing_class.chat_template = chat_template_file.read() |
|
else: |
|
model, processing_class = clone_chat_template(model, processing_class, args.chat_template_path) |
|
|
|
|
|
if False: |
|
model = self._prepare_peft_model(model, peft_config, args) |
|
|
|
|
|
|
|
|
|
self.padding_free = args.padding_free or (args.packing and args.packing_strategy == "ffd") |
|
if self.padding_free: |
|
if data_collator is not None: |
|
raise ValueError("Passing a custom data collator is not supported when using padding-free.") |
|
if args.packing and args.packing_strategy == "wrapped": |
|
warnings.warn( |
|
"You are passing `padding_free=True` with the 'wrapped' packing strategy, which is not " |
|
"recommended. Please refer to the documentation to understand why this is not recommended." |
|
) |
|
if model.config._attn_implementation != "flash_attention_2": |
|
warnings.warn( |
|
"Padding-free training is enabled, but the attention implementation is not set to " |
|
"'flash_attention_2'. Padding-free training flattens batches into a single sequence, and " |
|
"'flash_attention_2' is the only known attention mechanism that reliably supports this. Using " |
|
"other implementations may lead to unexpected behavior. To ensure compatibility, set " |
|
"`attn_implementation='flash_attention_2'` in the model configuration, or verify that your " |
|
"attention mechanism can handle flattened sequences." |
|
) |
|
if args.per_device_train_batch_size == 1 and not args.packing: |
|
warnings.warn( |
|
"You are using a per_device_train_batch_size of 1 with padding-free training. Using a batch size " |
|
"of 1 anihilate the benefits of padding-free training. Please consider increasing the batch size " |
|
"to at least 2." |
|
) |
|
|
|
if args.completion_only_loss is None: |
|
first_example = next(iter(train_dataset)) |
|
self.completion_only_loss = "prompt" in first_example |
|
else: |
|
self.completion_only_loss = args.completion_only_loss |
|
|
|
if data_collator is None: |
|
|
|
|
|
pad_token = args.pad_token or processing_class.pad_token or processing_class.eos_token |
|
pad_token_id = processing_class.convert_tokens_to_ids(pad_token) |
|
if pad_token_id is None: |
|
raise ValueError( |
|
f"The specified `pad_token` ('{pad_token}') is not found in the vocabulary of the given " |
|
f"`processing_class` ({processing_class.__class__.__name__}). Ensure that the `pad_token` exists " |
|
"in the vocabulary before using it as a padding token." |
|
) |
|
data_collator = DataCollatorForLanguageModeling( |
|
pad_token_id=pad_token_id, |
|
completion_only_loss=self.completion_only_loss, |
|
padding_free=self.padding_free, |
|
|
|
return_position_ids=model.config._attn_implementation == "flash_attention_2", |
|
pad_to_multiple_of=args.pad_to_multiple_of, |
|
) |
|
|
|
if ( |
|
args.packing |
|
and args.packing_strategy == "ffd" |
|
and model.config._attn_implementation != "flash_attention_2" |
|
): |
|
warnings.warn( |
|
"You are using packing, but the attention implementation is not set to 'flash_attention_2'. Packing " |
|
"flattens batches into a single sequence, and 'flash_attention_2' is the only known attention " |
|
"mechanism that reliably supports this. Using other implementations may lead to cross-contamination " |
|
"between batches. To avoid this, either disable packing by setting `packing=False`, or set " |
|
"`attn_implementation='flash_attention_2'` in the model configuration." |
|
) |
|
if args.assistant_only_loss and not is_conversational(train_dataset[0]): |
|
raise ValueError( |
|
"You set `assistant_only_loss=True`, but the dataset is not conversational. This option is only " |
|
"supported for conversational datasets." |
|
) |
|
|
|
|
|
preprocess_dataset = args.dataset_kwargs is None or not args.dataset_kwargs.get("skip_prepare_dataset", False) |
|
if preprocess_dataset: |
|
if self.completion_only_loss and formatting_func: |
|
raise ValueError( |
|
"A formatting function was provided while `completion_only_loss=True`, which is incompatible. " |
|
"Using a formatter converts the dataset to a language modeling type, conflicting with " |
|
"completion-only loss. To resolve this, apply your formatting function before passing the " |
|
"dataset, or disable `completion_only_loss` in `SFTConfig`." |
|
) |
|
train_dataset = self._prepare_dataset( |
|
train_dataset, processing_class, args, args.packing, formatting_func, "train" |
|
) |
|
if eval_dataset is not None: |
|
packing = args.packing if args.eval_packing is None else args.eval_packing |
|
if isinstance(eval_dataset, dict): |
|
eval_dataset = { |
|
key: self._prepare_dataset(dataset, processing_class, args, packing, formatting_func, key) |
|
for key, dataset in eval_dataset.items() |
|
} |
|
else: |
|
eval_dataset = self._prepare_dataset( |
|
eval_dataset, processing_class, args, packing, formatting_func, "eval" |
|
) |
|
|
|
|
|
self._metrics = {"train": defaultdict(list), "eval": defaultdict(list)} |
|
self._total_train_tokens = 0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
super().__init__( |
|
model=model, |
|
args=args, |
|
data_collator=data_collator, |
|
train_dataset=train_dataset, |
|
eval_dataset=eval_dataset, |
|
processing_class=processing_class, |
|
compute_loss_func=compute_loss_func, |
|
compute_metrics=compute_metrics, |
|
callbacks=callbacks, |
|
optimizers=optimizers, |
|
optimizer_cls_and_kwargs=optimizer_cls_and_kwargs, |
|
preprocess_logits_for_metrics=preprocess_logits_for_metrics, |
|
) |
|
|
|
|
|
if self.args.activation_offloading: |
|
self.maybe_activation_offload_context = get_act_offloading_ctx_manager(model=self.model) |
|
else: |
|
self.maybe_activation_offload_context = contextlib.nullcontext() |
|
|
|
|
|
if hasattr(self.model, "add_model_tags"): |
|
self.model.add_model_tags(self._tag_names) |
|
|
|
def _create_model_from_path(self, model_path: str, args: SFTConfig) -> PreTrainedModel: |
|
"""Creates a model from a path or model identifier.""" |
|
model_init_kwargs = args.model_init_kwargs or {} |
|
|
|
torch_dtype = model_init_kwargs.get("torch_dtype") |
|
if isinstance(torch_dtype, torch.dtype) or torch_dtype == "auto" or torch_dtype is None: |
|
pass |
|
elif isinstance(torch_dtype, str): |
|
torch_dtype = getattr(torch, torch_dtype) |
|
model_init_kwargs["torch_dtype"] = torch_dtype |
|
else: |
|
raise ValueError( |
|
"Invalid `torch_dtype` passed to `SFTConfig`. Expected either 'auto' or a string representing " |
|
f"a `torch.dtype` (e.g., 'float32'), but got {torch_dtype}." |
|
) |
|
|
|
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, **model_init_kwargs) |
|
return model |
|
|
|
def _prepare_peft_model(self, model: PreTrainedModel, peft_config: Any, args: SFTConfig) -> PreTrainedModel: |
|
"""Prepares a model for PEFT training.""" |
|
if not is_peft_available(): |
|
raise ImportError("To use PeftModel, you need to install the `peft` library.") |
|
|
|
if not isinstance(peft_config, PeftConfig): |
|
raise ValueError( |
|
f"Expected PeftConfig object but got {type(peft_config)}. If you want to use the PeftModel, you need " |
|
"to pass a PeftConfig object to the SFTTrainer." |
|
) |
|
|
|
if isinstance(model, PeftModel): |
|
return model |
|
|
|
|
|
is_qlora = getattr(model, "is_loaded_in_4bit", False) or getattr(model, "is_loaded_in_8bit", False) |
|
|
|
is_sharded_qlora = False |
|
if getattr(model, "is_loaded_in_4bit", False): |
|
|
|
for _, param in model.named_parameters(): |
|
if param.__class__.__name__ == "Params4bit": |
|
is_sharded_qlora = param.data.device.type in {"cpu", "meta"} |
|
break |
|
|
|
|
|
if is_qlora and not is_sharded_qlora: |
|
model = self._prepare_model_for_kbit_training(model, args) |
|
|
|
args = dataclasses.replace(args, gradient_checkpointing=False) |
|
elif args.gradient_checkpointing: |
|
model = self._enable_gradient_checkpointing(model, args) |
|
|
|
|
|
if ( |
|
version.parse(peft.__version__) >= version.parse("0.12") |
|
and getattr(model, "is_loaded_in_4bit", False) |
|
and is_sharded_qlora |
|
): |
|
model = get_peft_model(model, peft_config, autocast_adapter_dtype=False) |
|
else: |
|
model = get_peft_model(model, peft_config) |
|
|
|
|
|
if args.bf16 and getattr(model, "is_loaded_in_4bit", False) and not is_sharded_qlora: |
|
peft_module_casting_to_bf16(model) |
|
|
|
return model |
|
|
|
def _prepare_model_for_kbit_training(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel: |
|
"""Prepares a quantized model for kbit training.""" |
|
prepare_model_kwargs = { |
|
"use_gradient_checkpointing": args.gradient_checkpointing, |
|
"gradient_checkpointing_kwargs": args.gradient_checkpointing_kwargs or {}, |
|
} |
|
|
|
return prepare_model_for_kbit_training(model, **prepare_model_kwargs) |
|
|
|
def _enable_gradient_checkpointing(self, model: PreTrainedModel, args: SFTConfig) -> PreTrainedModel: |
|
"""Enables gradient checkpointing for the model.""" |
|
gradient_checkpointing_kwargs = args.gradient_checkpointing_kwargs or {} |
|
use_reentrant = ( |
|
"use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"] |
|
) |
|
|
|
if use_reentrant: |
|
if hasattr(model, "enable_input_require_grads"): |
|
model.enable_input_require_grads() |
|
else: |
|
|
|
def make_inputs_require_grad(module, input, output): |
|
output.requires_grad_(True) |
|
|
|
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) |
|
|
|
return model |
|
|
|
def _prepare_dataset( |
|
self, |
|
dataset: Union[Dataset, IterableDataset], |
|
processing_class, |
|
args, |
|
packing: bool, |
|
formatting_func: Optional[Callable[[dict], str]], |
|
dataset_name: str, |
|
) -> Union[Dataset, IterableDataset]: |
|
|
|
if isinstance(dataset, ConstantLengthDataset): return dataset |
|
|
|
map_kwargs = {} |
|
use_desc = isinstance(dataset, Dataset) |
|
is_vlm = hasattr(processing_class, "tokenizer") |
|
tokenizer = processing_class |
|
if is_vlm: tokenizer = processing_class.tokenizer |
|
|
|
|
|
max_seq_length = getattr(args, "max_length", 0) |
|
if max_seq_length == 0: max_seq_length = getattr(args, "max_seq_length", 0) |
|
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq_length", 0) |
|
if max_seq_length == 0: max_seq_length = getattr(self, "max_seq", 0) |
|
if max_seq_length == 0: raise RuntimeError("Unsloth: max_seq_length is 0! Please specify one!") |
|
dataset_text_field = getattr(args, "dataset_text_field", "text") |
|
do_truncation = max_seq_length != 0 |
|
do_formatting_func = False |
|
do_tokenize = True |
|
|
|
|
|
column_names = set(next(iter(dataset)).keys()) |
|
used_column_names = ["input_ids"] |
|
if "attention_mask" in column_names: |
|
used_column_names.append("attention_mask") |
|
|
|
|
|
from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling |
|
if "labels" in column_names: |
|
|
|
if is_vlm and not hasattr(tokenizer, "pad"): |
|
|
|
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!") |
|
self.data_collator = DataCollatorForSeq2Seq(tokenizer) |
|
used_column_names.append("labels") |
|
do_tokenize = False |
|
elif "input_ids" in column_names: |
|
|
|
if is_vlm and not hasattr(tokenizer, "pad"): |
|
|
|
raise RuntimeError(f"Unsloth: {processing_class.__class__} does not have .pad!") |
|
self.data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False) |
|
do_tokenize = False |
|
elif dataset_text_field not in column_names: |
|
do_formatting_func = True |
|
if formatting_func is None: |
|
raise RuntimeError("Unsloth: You must specify a `formatting_func`") |
|
pass |
|
|
|
if do_tokenize: |
|
|
|
if do_formatting_func: |
|
test_text = formatting_func(next(iter(dataset))) |
|
if not isinstance(test_text, list): |
|
raise ValueError( |
|
"Unsloth: The `formatting_func` should return a list of processed strings." |
|
) |
|
test_text = test_text[0] |
|
else: |
|
test_text = next(iter(dataset))[dataset_text_field][0] |
|
|
|
|
|
chat_template = getattr(processing_class, 'chat_template', '') |
|
if chat_template == '' and is_vlm: |
|
chat_template = getattr(tokenizer, 'chat_template', '') |
|
if chat_template is None: |
|
chat_template = '' |
|
|
|
|
|
add_special_tokens = True |
|
bos_token_1 = getattr(processing_class, 'bos_token', None) |
|
bos_token_2 = getattr(tokenizer, 'bos_token', None) |
|
bos_token = bos_token_1 or bos_token_2 |
|
|
|
if bos_token is not None: |
|
if test_text.startswith(bos_token) or bos_token in chat_template: |
|
add_special_tokens = False |
|
print("Unsloth: We found double BOS tokens - we shall remove one automatically.") |
|
pass |
|
|
|
|
|
def _tokenize(example): |
|
return tokenizer( |
|
example[dataset_text_field] if not do_formatting_func else formatting_func(example), |
|
truncation = do_truncation, |
|
max_length = max_seq_length, |
|
return_token_type_ids = False, |
|
add_special_tokens = add_special_tokens, |
|
) |
|
pass |
|
|
|
if not isinstance(dataset, IterableDataset): |
|
map_kwargs["num_proc"] = getattr(args, "dataset_num_proc", 2) |
|
else: |
|
map_kwargs["batch_size"] = dataset._ex_iterable.batch_size |
|
|
|
if use_desc: map_kwargs["desc"] = f'Unsloth: Tokenizing ["{dataset_text_field}"]' |
|
dataset = dataset.map(_tokenize, batched = True, **map_kwargs) |
|
|
|
|
|
if is_vlm and not hasattr(processing_class, "pad"): |
|
data_collator = DataCollatorForLanguageModeling(tokenizer, mlm = False) |
|
self.data_collator = data_collator |
|
pass |
|
pass |
|
if packing: |
|
print("Unsloth: Hugging Face's packing is currently buggy - we're disabling it for now!") |
|
return dataset |
|
|
|
if max_seq_length == 0: |
|
raise ValueError("When packing is enabled, `max_seq_length` can't be `None`.") |
|
|
|
if use_desc: map_kwargs["desc"] = f"Unsloth: Packing {dataset_name} dataset" |
|
dataset = dataset.select_columns(used_column_names).map( |
|
pack_examples, |
|
batched = True, |
|
fn_kwargs = {"seq_length": max_seq_length,}, |
|
**map_kwargs, |
|
) |
|
pass |
|
return dataset |
|
|
|
def _set_signature_columns_if_needed(self): |
|
|
|
|
|
|
|
|
|
if self._signature_columns is None: |
|
self._signature_columns = [ |
|
"input_ids", |
|
"labels", |
|
"position_ids", |
|
"completion_mask", |
|
"assistant_masks", |
|
] |
|
|
|
def compute_loss(self, model, inputs, return_outputs = False, num_items_in_batch = None): |
|
outputs = super().compute_loss( |
|
model, |
|
inputs, |
|
return_outputs = return_outputs, |
|
num_items_in_batch = num_items_in_batch, |
|
) |
|
return outputs |
|
|
|
|
|
def training_step(self, *args, **kwargs): |
|
with self.maybe_activation_offload_context: |
|
return super().training_step(*args, **kwargs) |
|
|
|
def log(self, logs: dict[str, float], start_time: Optional[float] = None) -> None: |
|
mode = "train" if self.model.training else "eval" |
|
metrics = {key: sum(val) / len(val) for key, val in self._metrics[mode].items()} |
|
|
|
|
|
|
|
if mode == "eval": |
|
metrics = {f"eval_{key}": val for key, val in metrics.items()} |
|
|
|
logs = {**logs, **metrics} |
|
super().log(logs, start_time) |
|
self._metrics[mode].clear() |
|
|
|
|
|
def _save_checkpoint(self, model, trial): |
|
if self.args.hub_model_id is None: |
|
model_name = Path(self.args.output_dir).name |
|
else: |
|
model_name = self.args.hub_model_id.split("/")[-1] |
|
self.create_model_card(model_name=model_name) |
|
super()._save_checkpoint(model, trial) |
|
|
|
def create_model_card( |
|
self, |
|
model_name: Optional[str] = None, |
|
dataset_name: Optional[str] = None, |
|
tags: Union[str, list[str], None] = None, |
|
): |
|
""" |
|
Creates a draft of a model card using the information available to the `Trainer`. |
|
|
|
Args: |
|
model_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the model. |
|
dataset_name (`str` or `None`, *optional*, defaults to `None`): |
|
Name of the dataset used for training. |
|
tags (`str`, `list[str]` or `None`, *optional*, defaults to `None`): |
|
Tags to be associated with the model card. |
|
""" |
|
if not self.is_world_process_zero(): |
|
return |
|
|
|
if hasattr(self.model.config, "_name_or_path") and not os.path.isdir(self.model.config._name_or_path): |
|
base_model = self.model.config._name_or_path |
|
else: |
|
base_model = None |
|
|
|
|
|
if tags is None: |
|
tags = set() |
|
elif isinstance(tags, str): |
|
tags = {tags} |
|
else: |
|
tags = set(tags) |
|
|
|
if hasattr(self.model.config, "unsloth_version"): |
|
tags.add("unsloth") |
|
|
|
tags.update(self._tag_names) |
|
|
|
model_card = generate_model_card( |
|
base_model=base_model, |
|
model_name=model_name, |
|
hub_model_id=self.hub_model_id, |
|
dataset_name=dataset_name, |
|
tags=list(tags), |
|
wandb_url=wandb.run.get_url() if is_wandb_available() and wandb.run is not None else None, |
|
comet_url=get_comet_experiment_url(), |
|
trainer_name="SFT", |
|
) |
|
|
|
model_card.save(os.path.join(self.args.output_dir, "README.md")) |
|
class UnslothSFTTrainer(_UnslothSFTTrainer): |
|
""" |
|
|
|
Trainer for Supervised Fine-Tuning (SFT) method. |
|
|
|
This class is a wrapper around the [`transformers.Trainer`] class and inherits all of its attributes and methods. |
|
|
|
Example: |
|
|
|
```python |
|
from datasets import load_dataset |
|
from trl import SFTTrainer |
|
|
|
dataset = load_dataset("roneneldan/TinyStories", split="train[:1%]") |
|
|
|
trainer = SFTTrainer(model="Qwen/Qwen2-0.5B-Instruct", train_dataset=dataset) |
|
trainer.train() |
|
``` |
|
|
|
Args: |
|
model (`Union[str, PreTrainedModel]`): |
|
Model to be trained. Can be either: |
|
|
|
- A string, being the *model id* of a pretrained model hosted inside a model repo on huggingface.co, or a |
|
path to a *directory* containing model weights saved using |
|
[`~transformers.PreTrainedModel.save_pretrained`], e.g., `'./my_model_directory/'`. The model is loaded |
|
using [`~transformers.AutoModelForCausalLM.from_pretrained`] with the keyword arguments in |
|
`args.model_init_kwargs`. |
|
- A [`~transformers.PreTrainedModel`] object. Only causal language models are supported. |
|
args ([`SFTConfig`], *optional*, defaults to `None`): |
|
Configuration for this trainer. If `None`, a default configuration is used. |
|
data_collator (`DataCollator`, *optional*): |
|
Function to use to form a batch from a list of elements of the processed `train_dataset` or `eval_dataset`. |
|
Will default to a custom [`DataCollatorForLanguageModeling`]. |
|
train_dataset ([`~datasets.Dataset`] or [`~datasets.IterableDataset`]): |
|
Dataset to use for training. SFT supports both [language modeling](#language-modeling) type and |
|
[prompt-completion](#prompt-completion) type. The format of the samples can be either: |
|
|
|
- [Standard](dataset_formats#standard): Each sample contains plain text. |
|
- [Conversational](dataset_formats#conversational): Each sample contains structured messages (e.g., role |
|
and content). |
|
|
|
The trainer also supports processed datasets (tokenized) as long as they contain an `input_ids` field. |
|
eval_dataset ([`~datasets.Dataset`], [`~datasets.IterableDataset`] or `dict[str, Union[Dataset, IterableDataset]]`): |
|
Dataset to use for evaluation. It must meet the same requirements as `train_dataset`. |
|
processing_class ([`~transformers.PreTrainedTokenizerBase`], *optional*, defaults to `None`): |
|
Processing class used to process the data. If `None`, the processing class is loaded from the model's name |
|
with [`~transformers.AutoTokenizer.from_pretrained`]. |
|
callbacks (list of [`~transformers.TrainerCallback`], *optional*, defaults to `None`): |
|
List of callbacks to customize the training loop. Will add those to the list of default callbacks detailed |
|
in [here](https://huggingface.co/docs/transformers/main_classes/callback). |
|
|
|
If you want to remove one of the default callbacks used, use the [`~transformers.Trainer.remove_callback`] |
|
method. |
|
optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`, *optional*, defaults to `(None, None)`): |
|
A tuple containing the optimizer and the scheduler to use. Will default to an instance of [`AdamW`] on your |
|
model and a scheduler given by [`get_linear_schedule_with_warmup`] controlled by `args`. |
|
optimizer_cls_and_kwargs (`Tuple[Type[torch.optim.Optimizer], Dict[str, Any]]`, *optional*, defaults to `None`): |
|
A tuple containing the optimizer class and keyword arguments to use. Overrides `optim` and `optim_args` in |
|
`args`. Incompatible with the `optimizers` argument. |
|
|
|
Unlike `optimizers`, this argument avoids the need to place model parameters on the correct devices before |
|
initializing the Trainer. |
|
preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`, *optional*, defaults to `None`): |
|
A function that preprocess the logits right before caching them at each evaluation step. Must take two |
|
tensors, the logits and the labels, and return the logits once processed as desired. The modifications made |
|
by this function will be reflected in the predictions received by `compute_metrics`. |
|
|
|
Note that the labels (second parameter) will be `None` if the dataset does not have them. |
|
peft_config ([`~peft.PeftConfig`], *optional*, defaults to `None`): |
|
PEFT configuration used to wrap the model. If `None`, the model is not wrapped. |
|
formatting_func (`Optional[Callable]`): |
|
Formatting function applied to the dataset before tokenization. Applying the formatting function explicitly |
|
converts the dataset into a [language modeling](#language-modeling) type. |
|
|
|
""" |
|
def __init__( |
|
self, |
|
model, |
|
args = None, |
|
data_collator = None, |
|
train_dataset = None, |
|
eval_dataset = None, |
|
processing_class = None, |
|
compute_loss_func = None, |
|
compute_metrics = None, |
|
callbacks = None, |
|
optimizer_cls_and_kwargs = None, |
|
preprocess_logits_for_metrics = None, |
|
peft_config = None, |
|
formatting_func = None, |
|
**kwargs |
|
): |
|
if args is None: args = UnslothSFTConfig() |
|
use_bf16 = getattr(args, 'bf16', False) |
|
if type(use_bf16) is not bool: use_bf16 = False |
|
use_fp16 = getattr(args, 'fp16', False) |
|
if type(use_fp16) is not bool: use_fp16 = False |
|
force_float32 = False |
|
if os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1': |
|
print('Unsloth: Switching to float32 training since model cannot work with float16') |
|
force_float32 = True |
|
mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') |
|
dtype = getattr(model.config, 'torch_dtype', None) |
|
if dtype is None: dtype = model.get_input_embeddings().dtype |
|
from unsloth_zoo.utils import _get_dtype |
|
dtype = _get_dtype(dtype) |
|
float16 = dtype == torch.float16 |
|
if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') |
|
if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') |
|
if force_float32: |
|
args.fp16 = False |
|
args.bf16 = False |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' |
|
elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': |
|
args.fp16 = float16 |
|
args.bf16 = not float16 |
|
os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' |
|
if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': |
|
args.eval_strategy = 'steps' |
|
if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 |
|
ga_steps = getattr(args, 'gradient_accumulation_steps', None) |
|
if ga_steps is not None and ga_steps > 1: |
|
from transformers import __version__ as transformers_version |
|
if Version(transformers_version) <= Version('4.45.2'): |
|
print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' |
|
'`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') |
|
if getattr(args, 'eval_strategy', 'no') != 'no': |
|
eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) |
|
if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size |
|
if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps |
|
fp16_full_eval = getattr(args, 'fp16_full_eval', False) |
|
if type(fp16_full_eval) is not bool: fp16_full_eval = False |
|
bf16_full_eval = getattr(args, 'bf16_full_eval', False) |
|
if type(bf16_full_eval) is not bool: bf16_full_eval = False |
|
if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True |
|
if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False |
|
if force_float32: |
|
args.bf16_full_eval = False |
|
args.fp16_full_eval = False |
|
elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': |
|
args.bf16_full_eval = True |
|
args.fp16_full_eval = False |
|
elif not bf16_full_eval and not fp16_full_eval: |
|
args.bf16_full_eval = args.bf16 |
|
args.fp16_full_eval = args.fp16 |
|
_output_logits = False |
|
if locals().get('compute_metrics', None) is not None: _output_logits = True |
|
if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True |
|
if _output_logits: |
|
os.environ['UNSLOTH_RETURN_LOGITS'] = '1' |
|
if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): |
|
pass |
|
else: |
|
model_max_seq_length = getattr(model, 'max_seq_length', None) |
|
args_max_seq_length = getattr(args, 'max_seq_length', None) |
|
if args_max_seq_length is None and model_max_seq_length is not None: |
|
max_seq_length = model.max_seq_length |
|
if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length |
|
if 'max_length' not in locals() and not hasattr(args, 'max_length'): |
|
pass |
|
else: |
|
if hasattr(args, 'max_seq_length') and args.max_seq_length is not None and args.max_seq_length > 0: |
|
if hasattr(args, 'max_length'): |
|
args.max_length = args.max_seq_length |
|
max_length = args.max_length |
|
else: |
|
model_max_length = getattr(model, 'max_seq_length', None) |
|
|
|
if model_max_length is None: model_max_length = getattr(model, 'max_length', None) |
|
|
|
if model_max_length is not None: |
|
args.max_length = model_max_length |
|
max_length = args.max_length |
|
elif hasattr(args, 'max_length') and args.max_length is not None: |
|
max_length = args.max_length |
|
|
|
setattr(model, 'max_seq_length', max_length) |
|
else: |
|
print('Unsloth: We did not find `max_seq_length` or `max_length` in the model or args. We will set it to 1024.') |
|
args.max_length = 1024 |
|
if model is not None and hasattr(model, 'for_training'): |
|
model.for_training() |
|
if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' |
|
if 'processing_class' in locals(): |
|
if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' |
|
if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' |
|
__tokenizer = processing_class if 'processing_class' in locals() else tokenizer |
|
from unsloth_zoo.vision_utils import UnslothVisionDataCollator |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: |
|
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer, mlm = False, mlm_probability = 0.0) |
|
elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer) |
|
else: |
|
if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False |
|
if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' |
|
if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} |
|
if not isinstance(data_collator, UnslothVisionDataCollator): |
|
if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): |
|
if isinstance(data_collator, DataCollatorForSeq2Seq): |
|
data_collator = DataCollatorForSeq2Seq(__tokenizer.tokenizer) |
|
else: |
|
data_collator = TransformersDataCollatorForLanguageModeling(__tokenizer.tokenizer, mlm = False, mlm_probability = 0.0) |
|
other_metrics = [] |
|
|
|
from unsloth_zoo.logging_utils import PatchRLStatistics |
|
PatchRLStatistics('sft_trainer', other_metrics) |
|
IGNORED_TOKENIZER_NAMES = os.environ.get('UNSLOTH_IGNORED_TOKENIZER_NAMES', '').split('\n') |
|
from unsloth_zoo.tokenizer_utils import fix_untrained_tokens |
|
from unsloth_zoo.training_utils import fix_zero_training_loss |
|
if 'tokenizer' not in locals(): tokenizer = processing_class |
|
fix_untrained_tokens(model, tokenizer, train_dataset, IGNORED_TOKENIZER_NAMES, eps = 1e-16) |
|
fix_zero_training_loss(model, tokenizer, train_dataset) |
|
|
|
super().__init__( |
|
model = model, |
|
args = args, |
|
data_collator = data_collator, |
|
train_dataset = train_dataset, |
|
eval_dataset = eval_dataset, |
|
processing_class = processing_class, |
|
compute_loss_func = compute_loss_func, |
|
compute_metrics = compute_metrics, |
|
callbacks = callbacks, |
|
optimizer_cls_and_kwargs = optimizer_cls_and_kwargs, |
|
preprocess_logits_for_metrics = preprocess_logits_for_metrics, |
|
peft_config = peft_config, |
|
formatting_func = formatting_func,**kwargs) |
|
if hasattr(self, 'neftune_hook_handle'): |
|
self.neftune_hook_handle.remove() |
|
if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle |
|
if getattr(args, 'neftune_noise_alpha', None) is not None: |
|
model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha |
|
pass |
|
|
|
pass |
|
|