File size: 14,354 Bytes
60c9873
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3b53a47520>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3b53a475b0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3b53a47640>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3b53a476d0>", "_build": "<function ActorCriticPolicy._build at 0x7f3b53a47760>", "forward": "<function ActorCriticPolicy.forward at 0x7f3b53a477f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f3b53a47880>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3b53a47910>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3b53a479a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3b53a47a30>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3b53a47ac0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3b53a47b50>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f3b53a42300>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679963152600244602, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV1wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMUi9ob21lL2FydGh1ci8ubG9jYWwvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjFIvaG9tZS9hcnRodXIvLmxvY2FsL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAANzdnj+tPAc+M1kUPwlsAECX8I+/SLmZvyV80zxWfji/TQKFPw3tnb+pSzI/w9lMv11KHj/cvQI/knWLvnEND8CSvS2/A7wnP/IbXT5PSnY/0upmP8kBFj9BwXq/n9Ofvw523L+eK7M+J83uvwedZ78muMY/ICGOvrwGpj5An/8/8/ICwL9j8T40weG+Z2agvzr7qD9Jxie+Fxp7PyWVWL3hWW8/4ziLvkR8bz4Av3m/8jKLv+QlqL42P409U+AqP8nxgz/ECMU/3qXwvimOu79HohQ/niuzPvg3CT8HnWe/yVD0Po1Odb91mu2+ncZjP2olHMAenrg/uZfavo78mL5cz5a/QOygPwgPUz9/d+A+uj+/vbNOVz9DYqU+GTr+PPxSBb4sfH6/yRctv+trIj6Tm22/SBGVPxonpD84dle/R6IUP54rsz74Nwk/B51nv4krjD+0Gu++7UEmPlN6yz/nDBfA+TqAP2YGFL9skE6/O9RcPqqAtz/SAGE//D4DvqGfFj9qHCY/Ah6SPtfCTr8lCIq/QBnGvlNEIL4wyF0/d83FvoUfQj/1MKg+fhojwEeiFD+eK7M++DcJPwedZ7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAA8Qna2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA98+YPAAAAADStvm/AAAAAJE1U70AAAAAWSbdPwAAAABzLd+8AAAAAN4e8j8AAAAACiV8PQAAAACw9PG/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIvWBNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMArAr0AAAAAcbbrvwAAAAA+18s9AAAAALbg2z8AAAAAa7igPQAAAABVoeY/AAAAAFX5ND0AAAAAVILdvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAOMKIjcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIBYQRC+AAAAAAnC6b8AAAAAZ3KhPQAAAAA3AOw/AAAAAHD8YT0AAAAAnZnqPwAAAABq5A6+AAAAAGsM878AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACAKJ22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAsn2oPQAAAABZ3+q/AAAAAKec/LwAAAAAylzwPwAAAADrQsu9AAAAALsb4T8AAAAAYXdjvAAAAACijf+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJCBDUz9CNWMAWyUTegDjAF0lEdAoIolgKF7D3V9lChoBkdAkIEubRWtEGgHTegDaAhHQKCKwGqxTsJ1fZQoaAZHQJR+dH4GlhxoB03oA2gIR0CgiyHCoCMhdX2UKGgGR0CONhSS/0ulaAdN6ANoCEdAoIznIwM6R3V9lChoBkdAh/FqGtZFHGgHTegDaAhHQKCSaqXF98Z1fZQoaAZHQIe+Ny925hBoB03oA2gIR0Cgkz4RVZLadX2UKGgGR0CGPc8DB/I9aAdN6ANoCEdAoJOkT6BRRHV9lChoBkdAjFcNjbzshWgHTegDaAhHQKCVYr5IpYt1fZQoaAZHQILOyiqQzUJoB03oA2gIR0CgmxwHqu8sdX2UKGgGR0CKLRLeQ+2WaAdN6ANoCEdAoJvE2pAD73V9lChoBkdAgX8eRYA80WgHTegDaAhHQKCcL4YaYNR1fZQoaAZHQH1kcQumJnBoB03oA2gIR0Cgnfk2xY7rdX2UKGgGR0CN3sEqUeMiaAdN6ANoCEdAoKQCF7D2rXV9lChoBkdAg/I9ic5Ke2gHTegDaAhHQKCkxrGipNt1fZQoaAZHQIr35e3QUpNoB03oA2gIR0CgpUGuDBdldX2UKGgGR0COnotZmqYJaAdN6ANoCEdAoKcpwhnrZHV9lChoBkdAhveiiAUcn2gHTegDaAhHQKCsyFlCkXV1fZQoaAZHQJHMdnmJWNpoB03oA2gIR0CgrV3ai9IxdX2UKGgGR0CGh6j/MnqnaAdN6ANoCEdAoK2+3pfQbHV9lChoBkdAkD4Nepn6EmgHTegDaAhHQKCvwJEYwZh1fZQoaAZHQJISiyiVSoBoB03oA2gIR0CgtOkvkBCEdX2UKGgGR0CW9s1YhdMTaAdN6ANoCEdAoLWZEBsAN3V9lChoBkdAjgooczZYgmgHTegDaAhHQKC19tj0+Tx1fZQoaAZHQJNygP07KaJoB03oA2gIR0Cgt4suez2OdX2UKGgGR0CZ/b0/4ZdfaAdN6ANoCEdAoLzrihnJ1nV9lChoBkdAl688Nc4YJmgHTegDaAhHQKC9fwR5C4V1fZQoaAZHQJsZqEM9bHJoB03oA2gIR0Cgvd01hsqKdX2UKGgGR0CMyjLxqfvnaAdN6ANoCEdAoL92SU1Q7HV9lChoBkdAmMaIjrzGxWgHTegDaAhHQKDE5dVNpM91fZQoaAZHQJvqcuf29L9oB03oA2gIR0CgxYRSpBHDdX2UKGgGR0CWtaKRMewLaAdN6ANoCEdAoMXkrmQr+nV9lChoBkdAmV8YbfgrH2gHTegDaAhHQKDHlJf6XSl1fZQoaAZHQJ0sG/Dcdo5oB03oA2gIR0CgzRT1schldX2UKGgGR0CdR5+r2g3+aAdN6ANoCEdAoM2nlQuVX3V9lChoBkdAoDTz3dsSCmgHTegDaAhHQKDOBqoIfKZ1fZQoaAZHQKB95Lr5ZbJoB03oA2gIR0Cgz9v7m+0xdX2UKGgGR0Cbd0I2OyVwaAdN6ANoCEdAoNUCn752yXV9lChoBkdAneYvRRdhRmgHTegDaAhHQKDVv+2E0zl1fZQoaAZHQKAs49q1w5xoB03oA2gIR0Cg1jcyWRigdX2UKGgGR0Cc+2gTyrggaAdN6ANoCEdAoNfanJkoW3V9lChoBkdAn1HT+irT6WgHTegDaAhHQKDdRRhttQ91fZQoaAZHQJ32q1JDmbNoB03oA2gIR0Cg3eYOUdJbdX2UKGgGR0Cd/DOU+s5oaAdN6ANoCEdAoN5GBczIm3V9lChoBkdAm/RKEal1sGgHTegDaAhHQKDf6gdwNsp1fZQoaAZHQJuOkgTyrghoB03oA2gIR0Cg5WCAc1fmdX2UKGgGR0CcqKttygf2aAdN6ANoCEdAoOXxLVWjoXV9lChoBkdAm+kxIjGDMGgHTegDaAhHQKDmTmSQo1F1fZQoaAZHQJgPRI3BHkNoB03oA2gIR0Cg5/+CbtqpdX2UKGgGR0CaCTRkmQbNaAdN6ANoCEdAoO14XoC+13V9lChoBkdAl/eDXz19OWgHTegDaAhHQKDuEjfvWpZ1fZQoaAZHQJz152fTTfBoB03oA2gIR0Cg7nNsenyedX2UKGgGR0CSDZ3I+4b0aAdN6ANoCEdAoPAfKfWc0HV9lChoBkdAmzRcpkPMCGgHTegDaAhHQKD1qT6BRQ91fZQoaAZHQJnIRxdY4hloB03oA2gIR0Cg9otMXaakdX2UKGgGR0CbrWk6Lfk4aAdN6ANoCEdAoPb76k6903V9lChoBkdAnKFHcHnln2gHTegDaAhHQKD4ps/IKdB1fZQoaAZHQJz/7wazeGhoB03oA2gIR0Cg/iH1e0HAdX2UKGgGR0Cbnu3kPtlaaAdN6ANoCEdAoP6+vjfelHV9lChoBkdAmwtREa2nbmgHTegDaAhHQKD/Jm8ujAV1fZQoaAZHQJ4q+aRZED1oB03oA2gIR0ChAPSYPXkHdX2UKGgGR0Ccsu5ftx+8aAdN6ANoCEdAoQZhGMGX5XV9lChoBkdAm562a+evp2gHTegDaAhHQKEG7xQSBbx1fZQoaAZHQJ1AvDBMzuZoB03oA2gIR0ChB0qEOAiFdX2UKGgGR0Ccvi/jKgZkaAdN6ANoCEdAoQjtrIo3JnV9lChoBkdAnOoDjBEa2mgHTegDaAhHQKEOiiB5HEx1fZQoaAZHQJyp10q6OHZoB03oA2gIR0ChDy1XFLnLdX2UKGgGR0CcfPGDtgKGaAdN6ANoCEdAoQ+O+dsi0XV9lChoBkdAnOyteY2KmGgHTegDaAhHQKERMkgOjIt1fZQoaAZHQJ4PN7SiM5xoB03oA2gIR0ChFuutnwocdX2UKGgGR0CbARdDpkf+aAdN6ANoCEdAoRep6Y3Ns3V9lChoBkdAm9xuMERramgHTegDaAhHQKEYBp9JBgN1fZQoaAZHQJ0jotkFwDNoB03oA2gIR0ChGbXXAdn1dX2UKGgGR0CdKMB6KLsKaAdN6ANoCEdAoR8i3RXwLHV9lChoBkdAnNWedGy5Z2gHTegDaAhHQKEfsJOWSlp1fZQoaAZHQJxHgpx3mmtoB03oA2gIR0ChIA4h2W6cdX2UKGgGR0CeaAoegctHaAdN6ANoCEdAoSG3D+BH1HV9lChoBkdAnog7rHEMs2gHTegDaAhHQKEnL4C6pYN1fZQoaAZHQJyzClXRw61oB03oA2gIR0ChJ9WmgrYodX2UKGgGR0Cbb5wEQoTgaAdN6ANoCEdAoSg2NgjQiXV9lChoBkdAle7GwaBI4GgHTegDaAhHQKEp9a0QbuN1fZQoaAZHQJ0lC1jRUm5oB03oA2gIR0ChLx3xnWaudX2UKGgGR0CcTPuuRs/IaAdN6ANoCEdAoS+zpA2Q4nV9lChoBkdAnXLIM4LkS2gHTegDaAhHQKEwEYP5HmR1fZQoaAZHQJnvEju8brFoB03oA2gIR0ChMelkYoAodX2UKGgGR0CcLXaH9FWoaAdN6ANoCEdAoTcDGNrCWXV9lChoBkdAmwStvCMxXWgHTegDaAhHQKE3umPYFq11fZQoaAZHQJqKjVtoBaNoB03oA2gIR0ChODBnJ1aGdX2UKGgGR0CWvZ9iMHbAaAdN6ANoCEdAoTnW54GD+XV9lChoBkdAm/K6SHM2WWgHTegDaAhHQKE/SWLP2PF1fZQoaAZHQJwdTDBMzuZoB03oA2gIR0ChP+JAdGRWdX2UKGgGR0Cd6S4c3l0YaAdN6ANoCEdAoUBL1Iy0r3V9lChoBkdAm1nIsqaw2WgHTegDaAhHQKFCGhJyyUt1fZQoaAZHQJxBG+dsi0RoB03oA2gIR0ChR5UvwmVrdX2UKGgGR0CdM2mVZ9uxaAdN6ANoCEdAoUglUbT+enV9lChoBkdAmjbGhRIjGGgHTegDaAhHQKFIg1hsqKB1fZQoaAZHQJ4Z1wGW2PVoB03oA2gIR0ChSi+1jRUndX2UKGgGR0Cecs97F85TaAdN6ANoCEdAoU/DvAoG6nV9lChoBkdAni5KgZjx1GgHTegDaAhHQKFQX60IC2d1fZQoaAZHQJ6hvlfZ26loB03oA2gIR0ChUMdiUgSwdX2UKGgGR0Ce5e5gPVd5aAdN6ANoCEdAoVK6/O+qR3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.19.0-35-generic-x86_64-with-glibc2.35 # 36~22.04.1-Ubuntu SMP PREEMPT_DYNAMIC Fri Feb 17 15:17:25 UTC 2", "Python": "3.10.6", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "False", "Numpy": "1.24.2", "Gym": "0.21.0"}}