--- license: cc-by-nc-sa-4.0 tags: - generated_from_trainer datasets: - cord-layoutlmv3 metrics: - precision - recall - f1 - accuracy model-index: - name: layoutlmv3-finetuned-cord_100 results: - task: name: Token Classification type: token-classification dataset: name: cord-layoutlmv3 type: cord-layoutlmv3 config: cord split: test args: cord metrics: - name: Precision type: precision value: 0.9295774647887324 - name: Recall type: recall value: 0.938622754491018 - name: F1 type: f1 value: 0.9340782122905028 - name: Accuracy type: accuracy value: 0.9303904923599321 --- # layoutlmv3-finetuned-cord_100 This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset. It achieves the following results on the evaluation set: - Loss: 0.3404 - Precision: 0.9296 - Recall: 0.9386 - F1: 0.9341 - Accuracy: 0.9304 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 5 - eval_batch_size: 5 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 2500 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 4.17 | 250 | 0.9987 | 0.7470 | 0.7957 | 0.7706 | 0.8043 | | 1.3632 | 8.33 | 500 | 0.5299 | 0.8641 | 0.8855 | 0.8747 | 0.8829 | | 1.3632 | 12.5 | 750 | 0.3861 | 0.8853 | 0.9124 | 0.8986 | 0.9126 | | 0.3151 | 16.67 | 1000 | 0.3392 | 0.9154 | 0.9311 | 0.9232 | 0.9321 | | 0.3151 | 20.83 | 1250 | 0.3382 | 0.9247 | 0.9371 | 0.9309 | 0.9308 | | 0.1265 | 25.0 | 1500 | 0.3364 | 0.9225 | 0.9356 | 0.9290 | 0.9300 | | 0.1265 | 29.17 | 1750 | 0.3333 | 0.9304 | 0.9401 | 0.9352 | 0.9321 | | 0.0716 | 33.33 | 2000 | 0.3381 | 0.9296 | 0.9394 | 0.9345 | 0.9312 | | 0.0716 | 37.5 | 2250 | 0.3474 | 0.9290 | 0.9409 | 0.9349 | 0.9321 | | 0.0525 | 41.67 | 2500 | 0.3404 | 0.9296 | 0.9386 | 0.9341 | 0.9304 | ### Framework versions - Transformers 4.27.4 - Pytorch 1.13.1+cu116 - Datasets 2.11.0 - Tokenizers 0.13.2