artursz commited on
Commit
786710d
·
1 Parent(s): 960d857

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +79 -0
README.md ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ datasets:
6
+ - common_voice
7
+ model-index:
8
+ - name: wav2vec2-large-xls-r-300m-lv-v05
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # wav2vec2-large-xls-r-300m-lv-v05
16
+
17
+ This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 0.3862
20
+ - Wer: 0.2588
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 0.0003
40
+ - train_batch_size: 16
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 32
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_steps: 500
48
+ - num_epochs: 50
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
54
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
55
+ | 4.8836 | 2.81 | 400 | 0.8722 | 0.7244 |
56
+ | 0.5365 | 5.63 | 800 | 0.4622 | 0.4812 |
57
+ | 0.277 | 8.45 | 1200 | 0.4348 | 0.4056 |
58
+ | 0.1947 | 11.27 | 1600 | 0.4223 | 0.3636 |
59
+ | 0.1655 | 14.08 | 2000 | 0.4084 | 0.3465 |
60
+ | 0.1441 | 16.9 | 2400 | 0.4329 | 0.3497 |
61
+ | 0.121 | 19.72 | 2800 | 0.4371 | 0.3324 |
62
+ | 0.1062 | 22.53 | 3200 | 0.4202 | 0.3198 |
63
+ | 0.0937 | 25.35 | 3600 | 0.4063 | 0.3265 |
64
+ | 0.0871 | 28.17 | 4000 | 0.4253 | 0.3255 |
65
+ | 0.0755 | 30.98 | 4400 | 0.4368 | 0.3194 |
66
+ | 0.0627 | 33.8 | 4800 | 0.4067 | 0.2908 |
67
+ | 0.0595 | 36.62 | 5200 | 0.3929 | 0.2973 |
68
+ | 0.0523 | 39.44 | 5600 | 0.3748 | 0.2817 |
69
+ | 0.0434 | 42.25 | 6000 | 0.3769 | 0.2711 |
70
+ | 0.0391 | 45.07 | 6400 | 0.3901 | 0.2653 |
71
+ | 0.0319 | 47.88 | 6800 | 0.3862 | 0.2588 |
72
+
73
+
74
+ ### Framework versions
75
+
76
+ - Transformers 4.11.3
77
+ - Pytorch 1.10.0+cu111
78
+ - Datasets 1.13.3
79
+ - Tokenizers 0.10.3