File size: 2,657 Bytes
eb2d250
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
from torch import nn
from transformers import PreTrainedModel, PretrainedConfig
from transformers import BertModel, BertConfig
from transformers import AutoModelForTokenClassification, AutoConfig
from torchcrf import CRF

class BERT_CRF_Config(PretrainedConfig):
    model_type = "BERT_CRF"

    def __init__(self, **kwarg):
        super().__init__(**kwarg)
        self.model_name = "BERT_CRF"


class BERT_CRF(PreTrainedModel):
    config_class = BERT_CRF_Config

    def __init__(self, config):
        super().__init__(config)

        bert_config = BertConfig.from_pretrained(config.bert_name)

        bert_config.output_attentions = True
        bert_config.output_hidden_states = True

        self.bert = BertModel.from_pretrained(config.bert_name, config=bert_config)

        self.dropout = nn.Dropout(p=0.5)

        self.linear = nn.Linear(
            self.bert.config.hidden_size, config.num_labels)

        self.crf = CRF(config.num_labels, batch_first=True)

    def forward(self, input_ids, token_type_ids, attention_mask, labels, labels_mask):

        last_hidden_layer = self.bert(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[
            'last_hidden_state']

        last_hidden_layer = self.dropout(last_hidden_layer)

        logits = self.linear(last_hidden_layer)

        batch_size = logits.shape[0]

        output_tags = []

        if labels is not None:
            loss = 0

            for seq_logits, seq_labels, seq_mask in zip(logits, labels, labels_mask):
                # Index logits and labels using prediction mask to pass only the
                # first subtoken of each word to CRF.
                seq_logits = seq_logits[seq_mask].unsqueeze(0)
                seq_labels = seq_labels[seq_mask].unsqueeze(0)

                if seq_logits.numel() != 0:
                    loss -= self.crf(seq_logits, seq_labels,
                                     reduction='token_mean')

            return loss / batch_size
        else:
            for seq_logits, seq_mask in zip(logits, labels_mask):
                seq_logits = seq_logits[seq_mask].unsqueeze(0)

                if seq_logits.numel() != 0:
                    tags = self.crf.decode(seq_logits)
                else:
                    tags = [[]]

                # Unpack "batch" results
                output_tags.append(tags[0])

            return output_tags


class ModelRegisterStep():
    def __call__(self, args):

        AutoConfig.register("BERT_CRF", BERT_CRF_Config)
        AutoModelForTokenClassification.register(BERT_CRF_Config, BERT_CRF)

        return {
            **args,
        }