Update README.md
Browse files
README.md
CHANGED
@@ -37,18 +37,22 @@ Ruby Code Generator is a versatile tool crafted to streamline the interaction be
|
|
37 |
## Training procedure
|
38 |
|
39 |
**1. Load Dataset and Model:**
|
|
|
40 |
- Load the bigcode/the-stack-smol dataset using the Hugging Face Datasets library.
|
41 |
- Filter for the specified subset (data/ruby) and split (train).
|
42 |
- Load the bigcode/starcoder2-3b model from the Hugging Face Hub with '4-bit' quantization.
|
43 |
|
44 |
**2. Data Preprocessing:**
|
|
|
45 |
- Tokenize the code text using the appropriate tokenizer for the chosen model.
|
46 |
- Apply necessary cleaning or normalization (e.g., removing comments, handling indentation).
|
47 |
- Create input examples suitable for the model's architecture (e.g., with masked language modeling objectives).
|
48 |
|
49 |
**3. Configure Training:**
|
|
|
50 |
- Initialize a Trainer object (likely from a library like Transformers).
|
51 |
- Set training arguments based on the provided args:
|
|
|
52 |
- Learning rate, optimizer, scheduler
|
53 |
- Gradient accumulation steps
|
54 |
- Weight decay
|
|
|
37 |
## Training procedure
|
38 |
|
39 |
**1. Load Dataset and Model:**
|
40 |
+
|
41 |
- Load the bigcode/the-stack-smol dataset using the Hugging Face Datasets library.
|
42 |
- Filter for the specified subset (data/ruby) and split (train).
|
43 |
- Load the bigcode/starcoder2-3b model from the Hugging Face Hub with '4-bit' quantization.
|
44 |
|
45 |
**2. Data Preprocessing:**
|
46 |
+
|
47 |
- Tokenize the code text using the appropriate tokenizer for the chosen model.
|
48 |
- Apply necessary cleaning or normalization (e.g., removing comments, handling indentation).
|
49 |
- Create input examples suitable for the model's architecture (e.g., with masked language modeling objectives).
|
50 |
|
51 |
**3. Configure Training:**
|
52 |
+
|
53 |
- Initialize a Trainer object (likely from a library like Transformers).
|
54 |
- Set training arguments based on the provided args:
|
55 |
+
|
56 |
- Learning rate, optimizer, scheduler
|
57 |
- Gradient accumulation steps
|
58 |
- Weight decay
|