arvindkaphley commited on
Commit
1205c25
·
verified ·
1 Parent(s): 1ce788a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -0
README.md CHANGED
@@ -37,18 +37,22 @@ Ruby Code Generator is a versatile tool crafted to streamline the interaction be
37
  ## Training procedure
38
 
39
  **1. Load Dataset and Model:**
 
40
  - Load the bigcode/the-stack-smol dataset using the Hugging Face Datasets library.
41
  - Filter for the specified subset (data/ruby) and split (train).
42
  - Load the bigcode/starcoder2-3b model from the Hugging Face Hub with '4-bit' quantization.
43
 
44
  **2. Data Preprocessing:**
 
45
  - Tokenize the code text using the appropriate tokenizer for the chosen model.
46
  - Apply necessary cleaning or normalization (e.g., removing comments, handling indentation).
47
  - Create input examples suitable for the model's architecture (e.g., with masked language modeling objectives).
48
 
49
  **3. Configure Training:**
 
50
  - Initialize a Trainer object (likely from a library like Transformers).
51
  - Set training arguments based on the provided args:
 
52
  - Learning rate, optimizer, scheduler
53
  - Gradient accumulation steps
54
  - Weight decay
 
37
  ## Training procedure
38
 
39
  **1. Load Dataset and Model:**
40
+
41
  - Load the bigcode/the-stack-smol dataset using the Hugging Face Datasets library.
42
  - Filter for the specified subset (data/ruby) and split (train).
43
  - Load the bigcode/starcoder2-3b model from the Hugging Face Hub with '4-bit' quantization.
44
 
45
  **2. Data Preprocessing:**
46
+
47
  - Tokenize the code text using the appropriate tokenizer for the chosen model.
48
  - Apply necessary cleaning or normalization (e.g., removing comments, handling indentation).
49
  - Create input examples suitable for the model's architecture (e.g., with masked language modeling objectives).
50
 
51
  **3. Configure Training:**
52
+
53
  - Initialize a Trainer object (likely from a library like Transformers).
54
  - Set training arguments based on the provided args:
55
+
56
  - Learning rate, optimizer, scheduler
57
  - Gradient accumulation steps
58
  - Weight decay