--- library_name: setfit tags: - setfit - absa - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: BAAI/bge-small-en-v1.5 metrics: - accuracy widget: - text: to be a nightmare, said retired:The Type 096s are going to be a nightmare, said retired submariner and naval technical intelligence analyst Christopher Carlson, one of the researchers. - text: census as an independent exercise.:In fact, the government of Bihar has recently taken up the caste census as an independent exercise. - text: to Moscow's Improved Akula boats.:Carlson told Reuters he did not believe China had obtained Russia's 'crown jewels' - its very latest technology - but would be producing a submarine stealthy enough to compare to Moscow's Improved Akula boats. - text: staging fully armed nuclear deterrence patrols with its older:The Chinese navy is routinely staging fully armed nuclear deterrence patrols with its older Type 094 boats out of Hainan Island in the South China Sea, the Pentagon said in November, much like patrols operated for years by the United States, Britain, Russia, and France. - text: Sanjeev Chopra is a former:Sanjeev Chopra is a former IAS officer and Festival Director of Valley of Words. pipeline_tag: text-classification inference: false model-index: - name: SetFit Polarity Model with BAAI/bge-small-en-v1.5 results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.8387096774193549 name: Accuracy --- # SetFit Polarity Model with BAAI/bge-small-en-v1.5 This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of classifying aspect polarities. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. This model was trained within the context of a larger system for ABSA, which looks like so: 1. Use a spaCy model to select possible aspect span candidates. 2. Use a SetFit model to filter these possible aspect span candidates. 3. **Use this SetFit model to classify the filtered aspect span candidates.** ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **spaCy Model:** en_core_web_lg - **SetFitABSA Aspect Model:** [asadnaqvi/setfitabsa-aspect](https://huggingface.co/asadnaqvi/setfitabsa-aspect) - **SetFitABSA Polarity Model:** [asadnaqvi/setfitabsa-polarity](https://huggingface.co/asadnaqvi/setfitabsa-polarity) - **Maximum Sequence Length:** 512 tokens - **Number of Classes:** 4 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | Informative |