Update README.md
Browse files
README.md
CHANGED
@@ -12,6 +12,7 @@ library_name: peft
|
|
12 |
import torch
|
13 |
from peft import PeftModel
|
14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
|
|
15 |
# モデルの読み込み
|
16 |
model = AutoModelForCausalLM.from_pretrained(
|
17 |
"meta-llama/Llama-2-7b-hf",
|
@@ -23,10 +24,12 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
23 |
),
|
24 |
device_map={"":0}
|
25 |
)
|
|
|
26 |
# トークナイザーの読み込み
|
27 |
tokenizer = AutoTokenizer.from_pretrained(
|
28 |
-
"
|
29 |
)
|
|
|
30 |
# LoRAの読み込み
|
31 |
model = PeftModel.from_pretrained(
|
32 |
model,
|
@@ -34,8 +37,10 @@ model = PeftModel.from_pretrained(
|
|
34 |
device_map={"":0}
|
35 |
)
|
36 |
model.eval()
|
|
|
37 |
# プロンプトの準備
|
38 |
prompt = "### Instruction: 富士山とは?\n\n### Response: "
|
|
|
39 |
# 推論の実行
|
40 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
41 |
with torch.no_grad():
|
|
|
12 |
import torch
|
13 |
from peft import PeftModel
|
14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
15 |
+
|
16 |
# モデルの読み込み
|
17 |
model = AutoModelForCausalLM.from_pretrained(
|
18 |
"meta-llama/Llama-2-7b-hf",
|
|
|
24 |
),
|
25 |
device_map={"":0}
|
26 |
)
|
27 |
+
|
28 |
# トークナイザーの読み込み
|
29 |
tokenizer = AutoTokenizer.from_pretrained(
|
30 |
+
"meta-llama/Llama-2-7b-hf"
|
31 |
)
|
32 |
+
|
33 |
# LoRAの読み込み
|
34 |
model = PeftModel.from_pretrained(
|
35 |
model,
|
|
|
37 |
device_map={"":0}
|
38 |
)
|
39 |
model.eval()
|
40 |
+
|
41 |
# プロンプトの準備
|
42 |
prompt = "### Instruction: 富士山とは?\n\n### Response: "
|
43 |
+
|
44 |
# 推論の実行
|
45 |
inputs = tokenizer(prompt, return_tensors="pt").to("cuda:0")
|
46 |
with torch.no_grad():
|