File size: 2,149 Bytes
40564d7 895c235 40564d7 895c235 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
license: cc-by-nc-4.0
base_model: facebook/nllb-200-distilled-600M
tags:
- generated_from_trainer
metrics:
- bleu
model-index:
- name: nllb-200-distilled-600M-finetuned-ar-to-en
results: []
pipeline_tag: translation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# nllb-200-distilled-600M-finetuned-ar-to-en
This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7281
- Bleu: 63.3172
- Gen Len: 65.7
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|
| 1.4803 | 1.0 | 695 | 0.9925 | 48.0036 | 68.092 |
| 1.0588 | 2.0 | 1390 | 0.8618 | 53.6714 | 67.794 |
| 0.8397 | 3.0 | 2085 | 0.8034 | 56.8749 | 67.316 |
| 0.7816 | 4.0 | 2780 | 0.7718 | 59.7588 | 65.822 |
| 0.7349 | 5.0 | 3475 | 0.7509 | 60.9155 | 66.205 |
| 0.6737 | 6.0 | 4170 | 0.7422 | 61.9048 | 65.348 |
| 0.6373 | 7.0 | 4865 | 0.7338 | 62.8549 | 65.607 |
| 0.617 | 8.0 | 5560 | 0.7308 | 63.6105 | 65.335 |
| 0.6068 | 9.0 | 6255 | 0.7276 | 63.452 | 65.594 |
| 0.5913 | 10.0 | 6950 | 0.7281 | 63.3172 | 65.7 |
### Framework versions
- Transformers 4.31.0
- Pytorch 1.13.1
- Datasets 2.14.4
- Tokenizers 0.13.3 |