--- inference: false license: apache-2.0 datasets: - totally-not-an-llm/everything-sharegptformat-morecleaned language: - en tags: - llama - text-generation-inference --- # acrastt's Marx 3B GGML These files are GGML format model files for [acrastt's Marx 3B GGML](https://huggingface.co/acrastt/Marx-3B). GGML files are for CPU + GPU inference using [llama.cpp](https://github.com/ggerganov/llama.cpp) and libraries and UIs which support this format, such as: * [text-generation-webui](https://github.com/oobabooga/text-generation-webui) * [KoboldCpp](https://github.com/LostRuins/koboldcpp) * [ParisNeo/GPT4All-UI](https://github.com/ParisNeo/gpt4all-ui) * [llama-cpp-python](https://github.com/abetlen/llama-cpp-python) * [ctransformers](https://github.com/marella/ctransformers) ## How to run in `llama.cpp` I use the following command line; adjust for your tastes and needs: ``` ./main -t 8 -ngl 26 -m Marx-3B.ggmlv3.q4_0.bin --color -c 2048 --temp 0.7 --repeat_penalty 1.1 -n -1 -p "prompt goes here" ``` Change `-t 8` to the number of physical CPU cores you have. For example if your system has 8 cores/16 threads, use `-t 8`. Change `-ngl 26` to the number of layers to offload to GPU. Remove it if you don't have GPU acceleration. If you want to have a chat-style conversation, replace the `-p ` argument with `-i -ins`, you can use `--interactive-first` to start in interactive mode. ## Compatibility I have uploded llama.cpp quant methods (`q4_0, q4_1, q5_0, q5_1, q8_0`). Please refer to [llama.cpp](https://github.com/ggerganov/llama.cpp) and [TheBloke](https://huggingface.co/TheBloke)'s GGML models for further explanation. ## How to run in `text-generation-webui` Further instructions here: [text-generation-webui/docs/llama.cpp-models.md](https://github.com/oobabooga/text-generation-webui/blob/main/docs/llama.cpp-models.md). ## Thanks Thanks to [TheBloke](https://huggingface.co/TheBloke) for inspiration and providing almost all of the readme here! Thanks to [acrastt](https://huggingface.co/acrastt) for providing checkpoints of the model. Thanks to [Georgi Gerganov](https://github.com/ggerganov) and all of the awesome people in the AI community.