PyTorch
ssl-aasist
custom_code
File size: 17,849 Bytes
010952f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
import logging
import os
import random
import sys
from collections import defaultdict

import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from scipy.io.wavfile import read
from scipy.ndimage import gaussian_filter1d
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm

dir_path = os.path.dirname(__file__)
resynth_path = os.path.dirname(dir_path) + "/speech-resynthesis"
sys.path.append(resynth_path)
from dataset import parse_speaker, parse_style
from .utils import F0Stat

MAX_WAV_VALUE = 32768.0
logger = logging.getLogger(__name__)


def quantize_f0(speaker_to_f0, nbins, normalize, log):
    f0_all = []
    for speaker, f0 in speaker_to_f0.items():
        f0 = f0.raw_data
        if log:
            f0 = f0.log()
        mean = speaker_to_f0[speaker].mean_log if log else speaker_to_f0[speaker].mean
        std = speaker_to_f0[speaker].std_log if log else speaker_to_f0[speaker].std
        if normalize == "mean":
            f0 = f0 - mean
        elif normalize == "meanstd":
            f0 = (f0 - mean) / std
        f0_all.extend(f0.tolist())

    hist, bin_x = np.histogram(f0_all, 100000)
    cum_hist = np.cumsum(hist) / len(f0_all) * 100

    bin_offset = []
    bin_size = 100 / nbins
    threshold = bin_size
    for i in range(nbins - 1):
        index = (np.abs(cum_hist - threshold)).argmin()
        bin_offset.append(bin_x[index])
        threshold += bin_size
    bins = np.array(bin_offset)
    bins = torch.FloatTensor(bins)

    return bins


def save_ckpt(model, path, model_class, f0_min, f0_max, f0_bins, speaker_stats):
    ckpt = {
        "state_dict": model.state_dict(),
        "padding_token": model.padding_token,
        "model_class": model_class,
        "speaker_stats": speaker_stats,
        "f0_min": f0_min,
        "f0_max": f0_max,
        "f0_bins": f0_bins,
    }
    torch.save(ckpt, path)


def load_ckpt(path):
    ckpt = torch.load(path)
    ckpt["model_class"]["_target_"] = "emotion_models.pitch_predictor.CnnPredictor"
    model = hydra.utils.instantiate(ckpt["model_class"])
    model.load_state_dict(ckpt["state_dict"])
    model.setup_f0_stats(
        ckpt["f0_min"],
        ckpt["f0_max"],
        ckpt["f0_bins"],
        ckpt["speaker_stats"],
    )
    return model


def freq2bin(f0, f0_min, f0_max, bins):
    f0 = f0.clone()
    f0[f0 < f0_min] = f0_min
    f0[f0 > f0_max] = f0_max
    f0 = torch.bucketize(f0, bins)
    return f0


def bin2freq(x, f0_min, f0_max, bins, mode):
    n_bins = len(bins) + 1
    assert x.shape[-1] == n_bins
    bins = torch.cat([torch.tensor([f0_min]), bins]).to(x.device)
    if mode == "mean":
        f0 = (x * bins).sum(-1, keepdims=True) / x.sum(-1, keepdims=True)
    elif mode == "argmax":
        idx = F.one_hot(x.argmax(-1), num_classes=n_bins)
        f0 = (idx * bins).sum(-1, keepdims=True)
    else:
        raise NotImplementedError()
    return f0[..., 0]


def load_wav(full_path):
    sampling_rate, data = read(full_path)
    return data, sampling_rate


def l1_loss(input, target):
    return F.l1_loss(input=input.float(), target=target.float(), reduce=False)


def l2_loss(input, target):
    return F.mse_loss(input=input.float(), target=target.float(), reduce=False)


class Collator:
    def __init__(self, padding_idx):
        self.padding_idx = padding_idx

    def __call__(self, batch):
        tokens = [item[0] for item in batch]
        lengths = [len(item) for item in tokens]
        tokens = torch.nn.utils.rnn.pad_sequence(
            tokens, batch_first=True, padding_value=self.padding_idx
        )
        f0 = [item[1] for item in batch]
        f0 = torch.nn.utils.rnn.pad_sequence(
            f0, batch_first=True, padding_value=self.padding_idx
        )
        f0_raw = [item[2] for item in batch]
        f0_raw = torch.nn.utils.rnn.pad_sequence(
            f0_raw, batch_first=True, padding_value=self.padding_idx
        )
        spk = [item[3] for item in batch]
        spk = torch.LongTensor(spk)
        gst = [item[4] for item in batch]
        gst = torch.LongTensor(gst)
        mask = tokens != self.padding_idx
        return tokens, f0, f0_raw, spk, gst, mask, lengths


class CnnPredictor(nn.Module):
    def __init__(
        self,
        n_tokens,
        emb_dim,
        channels,
        kernel,
        dropout,
        n_layers,
        spk_emb,
        gst_emb,
        n_bins,
        f0_pred,
        f0_log,
        f0_norm,
    ):
        super(CnnPredictor, self).__init__()
        self.n_tokens = n_tokens
        self.emb_dim = emb_dim
        self.f0_log = f0_log
        self.f0_pred = f0_pred
        self.padding_token = n_tokens
        self.f0_norm = f0_norm
        # add 1 extra embedding for padding token, set the padding index to be the last token
        # (tokens from the clustering start at index 0)
        self.token_emb = nn.Embedding(
            n_tokens + 1, emb_dim, padding_idx=self.padding_token
        )

        self.spk_emb = spk_emb
        self.gst_emb = nn.Embedding(20, gst_emb)
        self.setup = False

        feats = emb_dim + gst_emb
        # feats = emb_dim + gst_emb + (256 if spk_emb else 0)
        layers = [
            nn.Sequential(
                Rearrange("b t c -> b c t"),
                nn.Conv1d(
                    feats, channels, kernel_size=kernel, padding=(kernel - 1) // 2
                ),
                Rearrange("b c t -> b t c"),
                nn.ReLU(),
                nn.LayerNorm(channels),
                nn.Dropout(dropout),
            )
        ]
        for _ in range(n_layers - 1):
            layers += [
                nn.Sequential(
                    Rearrange("b t c -> b c t"),
                    nn.Conv1d(
                        channels,
                        channels,
                        kernel_size=kernel,
                        padding=(kernel - 1) // 2,
                    ),
                    Rearrange("b c t -> b t c"),
                    nn.ReLU(),
                    nn.LayerNorm(channels),
                    nn.Dropout(dropout),
                )
            ]
        self.conv_layer = nn.ModuleList(layers)
        self.proj = nn.Linear(channels, n_bins)

    def forward(self, x, gst=None):
        x = self.token_emb(x)
        feats = [x]

        if gst is not None:
            gst = self.gst_emb(gst)
            gst = rearrange(gst, "b c -> b c 1")
            gst = F.interpolate(gst, x.shape[1])
            gst = rearrange(gst, "b c t -> b t c")
            feats.append(gst)

        x = torch.cat(feats, dim=-1)

        for i, conv in enumerate(self.conv_layer):
            if i != 0:
                x = conv(x) + x
            else:
                x = conv(x)

        x = self.proj(x)
        x = x.squeeze(-1)

        if self.f0_pred == "mean":
            x = torch.sigmoid(x)
        elif self.f0_pred == "argmax":
            x = torch.softmax(x, dim=-1)
        else:
            raise NotImplementedError
        return x

    def setup_f0_stats(self, f0_min, f0_max, f0_bins, speaker_stats):
        self.f0_min = f0_min
        self.f0_max = f0_max
        self.f0_bins = f0_bins
        self.speaker_stats = speaker_stats
        self.setup = True

    def inference(self, x, spk_id=None, gst=None):
        assert (
            self.setup == True
        ), "make sure that `setup_f0_stats` was called before inference!"
        probs = self(x, gst)
        f0 = bin2freq(probs, self.f0_min, self.f0_max, self.f0_bins, self.f0_pred)
        for i in range(f0.shape[0]):
            mean = (
                self.speaker_stats[spk_id[i].item()].mean_log
                if self.f0_log
                else self.speaker_stats[spk_id[i].item()].mean
            )
            std = (
                self.speaker_stats[spk_id[i].item()].std_log
                if self.f0_log
                else self.speaker_stats[spk_id[i].item()].std
            )
            if self.f0_norm == "mean":
                f0[i] = f0[i] + mean
            if self.f0_norm == "meanstd":
                f0[i] = (f0[i] * std) + mean
        if self.f0_log:
            f0 = f0.exp()
        return f0


class PitchDataset(Dataset):
    def __init__(
        self,
        tsv_path,
        km_path,
        substring,
        spk,
        spk2id,
        gst,
        gst2id,
        f0_bins,
        f0_bin_type,
        f0_smoothing,
        f0_norm,
        f0_log,
    ):
        lines = open(tsv_path, "r").readlines()
        self.root, self.tsv = lines[0], lines[1:]
        self.root = self.root.strip()
        self.km = open(km_path, "r").readlines()
        print(f"loaded {len(self.km)} files")

        self.spk = spk
        self.spk2id = spk2id
        self.gst = gst
        self.gst2id = gst2id

        self.f0_bins = f0_bins
        self.f0_smoothing = f0_smoothing
        self.f0_norm = f0_norm
        self.f0_log = f0_log

        if substring != "":
            tsv, km = [], []
            for tsv_line, km_line in zip(self.tsv, self.km):
                if substring.lower() in tsv_line.lower():
                    tsv.append(tsv_line)
                    km.append(km_line)
            self.tsv, self.km = tsv, km
            print(f"after filtering: {len(self.km)} files")

        self.speaker_stats = self._compute_f0_stats()
        self.f0_min, self.f0_max = self._compute_f0_minmax()
        if f0_bin_type == "adaptive":
            self.f0_bins = quantize_f0(
                self.speaker_stats, self.f0_bins, self.f0_norm, self.f0_log
            )
        elif f0_bin_type == "uniform":
            self.f0_bins = torch.linspace(self.f0_min, self.f0_max, self.f0_bins + 1)[
                1:-1
            ]
        else:
            raise NotImplementedError
        print(f"f0 min: {self.f0_min}, f0 max: {self.f0_max}")
        print(f"bins: {self.f0_bins} (shape: {self.f0_bins.shape})")

    def __len__(self):
        return len(self.km)

    def _load_f0(self, tsv_line):
        tsv_line = tsv_line.split("\t")[0]
        f0 = self.root + "/" + tsv_line.replace(".wav", ".yaapt.f0.npy")
        f0 = np.load(f0)
        f0 = torch.FloatTensor(f0)
        return f0

    def _preprocess_f0(self, f0, spk):
        mask = f0 != -999999  # process all frames
        # mask = (f0 != 0)  # only process voiced frames
        mean = (
            self.speaker_stats[spk].mean_log
            if self.f0_log
            else self.speaker_stats[spk].mean
        )
        std = (
            self.speaker_stats[spk].std_log
            if self.f0_log
            else self.speaker_stats[spk].std
        )
        if self.f0_log:
            f0[f0 == 0] = 1e-5
            f0[mask] = f0[mask].log()
        if self.f0_norm == "mean":
            f0[mask] = f0[mask] - mean
        if self.f0_norm == "meanstd":
            f0[mask] = (f0[mask] - mean) / std
        return f0

    def _compute_f0_minmax(self):
        f0_min, f0_max = float("inf"), -float("inf")
        for tsv_line in tqdm(self.tsv, desc="computing f0 minmax"):
            spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
            f0 = self._load_f0(tsv_line)
            f0 = self._preprocess_f0(f0, spk)
            f0_min = min(f0_min, f0.min().item())
            f0_max = max(f0_max, f0.max().item())
        return f0_min, f0_max

    def _compute_f0_stats(self):
        from functools import partial

        speaker_stats = defaultdict(partial(F0Stat, True))
        for tsv_line in tqdm(self.tsv, desc="computing speaker stats"):
            spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
            f0 = self._load_f0(tsv_line)
            mask = f0 != 0
            f0 = f0[mask]  # compute stats only on voiced parts
            speaker_stats[spk].update(f0)
        return speaker_stats

    def __getitem__(self, i):
        x = self.km[i]
        x = x.split(" ")
        x = list(map(int, x))
        x = torch.LongTensor(x)

        gst = parse_style(self.tsv[i], self.gst)
        gst = self.gst2id[gst]
        spk = parse_speaker(self.tsv[i], self.spk)
        spk = self.spk2id[spk]

        f0_raw = self._load_f0(self.tsv[i])
        f0 = self._preprocess_f0(f0_raw.clone(), spk)

        f0 = F.interpolate(f0.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]
        f0_raw = F.interpolate(f0_raw.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]

        f0 = freq2bin(f0, f0_min=self.f0_min, f0_max=self.f0_max, bins=self.f0_bins)
        f0 = F.one_hot(f0.long(), num_classes=len(self.f0_bins) + 1).float()
        if self.f0_smoothing > 0:
            f0 = torch.tensor(
                gaussian_filter1d(f0.float().numpy(), sigma=self.f0_smoothing)
            )
        return x, f0, f0_raw, spk, gst


def train(cfg):
    device = "cuda:0"
    # add 1 extra embedding for padding token, set the padding index to be the last token
    # (tokens from the clustering start at index 0)
    padding_token = cfg.n_tokens
    collate_fn = Collator(padding_idx=padding_token)
    train_ds = PitchDataset(
        cfg.train_tsv,
        cfg.train_km,
        substring=cfg.substring,
        spk=cfg.spk,
        spk2id=cfg.spk2id,
        gst=cfg.gst,
        gst2id=cfg.gst2id,
        f0_bins=cfg.f0_bins,
        f0_bin_type=cfg.f0_bin_type,
        f0_smoothing=cfg.f0_smoothing,
        f0_norm=cfg.f0_norm,
        f0_log=cfg.f0_log,
    )
    valid_ds = PitchDataset(
        cfg.valid_tsv,
        cfg.valid_km,
        substring=cfg.substring,
        spk=cfg.spk,
        spk2id=cfg.spk2id,
        gst=cfg.gst,
        gst2id=cfg.gst2id,
        f0_bins=cfg.f0_bins,
        f0_bin_type=cfg.f0_bin_type,
        f0_smoothing=cfg.f0_smoothing,
        f0_norm=cfg.f0_norm,
        f0_log=cfg.f0_log,
    )
    train_dl = DataLoader(
        train_ds,
        num_workers=0,
        batch_size=cfg.batch_size,
        shuffle=True,
        collate_fn=collate_fn,
    )
    valid_dl = DataLoader(
        valid_ds, num_workers=0, batch_size=16, shuffle=False, collate_fn=collate_fn
    )

    f0_min = train_ds.f0_min
    f0_max = train_ds.f0_max
    f0_bins = train_ds.f0_bins
    speaker_stats = train_ds.speaker_stats

    model = hydra.utils.instantiate(cfg["model"]).to(device)
    model.setup_f0_stats(f0_min, f0_max, f0_bins, speaker_stats)

    optimizer = hydra.utils.instantiate(cfg.optimizer, model.parameters())

    best_loss = float("inf")
    for epoch in range(cfg.epochs):
        train_loss, train_l2_loss, train_l2_voiced_loss = run_epoch(
            model, train_dl, optimizer, device, cfg, mode="train"
        )
        valid_loss, valid_l2_loss, valid_l2_voiced_loss = run_epoch(
            model, valid_dl, None, device, cfg, mode="valid"
        )
        print(
            f"[epoch {epoch}] train loss: {train_loss:.3f}, l2 loss: {train_l2_loss:.3f}, l2 voiced loss: {train_l2_voiced_loss:.3f}"
        )
        print(
            f"[epoch {epoch}] valid loss: {valid_loss:.3f}, l2 loss: {valid_l2_loss:.3f}, l2 voiced loss: {valid_l2_voiced_loss:.3f}"
        )
        if valid_l2_voiced_loss < best_loss:
            path = f"{os.getcwd()}/pitch_predictor.ckpt"
            save_ckpt(model, path, cfg["model"], f0_min, f0_max, f0_bins, speaker_stats)
            best_loss = valid_l2_voiced_loss
            print(f"saved checkpoint: {path}")
        print(f"[epoch {epoch}] best loss: {best_loss:.3f}")


def run_epoch(model, loader, optimizer, device, cfg, mode):
    if mode == "train":
        model.train()
    else:
        model.eval()

    epoch_loss = 0
    l1 = 0
    l1_voiced = 0
    for x, f0_bin, f0_raw, spk_id, gst, mask, _ in tqdm(loader):
        x, f0_bin, f0_raw, spk_id, gst, mask = (
            x.to(device),
            f0_bin.to(device),
            f0_raw.to(device),
            spk_id.to(device),
            gst.to(device),
            mask.to(device),
        )
        b, t, n_bins = f0_bin.shape
        yhat = model(x, gst)
        nonzero_mask = (f0_raw != 0).logical_and(mask)
        yhat_raw = model.inference(x, spk_id, gst)
        expanded_mask = mask.unsqueeze(-1).expand(-1, -1, n_bins)
        if cfg.f0_pred == "mean":
            loss = F.binary_cross_entropy(
                yhat[expanded_mask], f0_bin[expanded_mask]
            ).mean()
        elif cfg.f0_pred == "argmax":
            loss = F.cross_entropy(
                rearrange(yhat, "b t d -> (b t) d"),
                rearrange(f0_bin.argmax(-1), "b t -> (b t)"),
                reduce=False,
            )
            loss = rearrange(loss, "(b t) -> b t", b=b, t=t)
            loss = (loss * mask).sum() / mask.float().sum()
        else:
            raise NotImplementedError
        l1 += F.l1_loss(yhat_raw[mask], f0_raw[mask]).item()
        l1_voiced += F.l1_loss(yhat_raw[nonzero_mask], f0_raw[nonzero_mask]).item()
        epoch_loss += loss.item()

        if mode == "train":
            loss.backward()
            nn.utils.clip_grad_norm_(model.parameters(), 1.0)
            optimizer.step()

    print(f"{mode} example    y: {f0_bin.argmax(-1)[0, 50:60].tolist()}")
    print(f"{mode} example yhat: {yhat.argmax(-1)[0, 50:60].tolist()}")
    print(f"{mode} example    y: {f0_raw[0, 50:60].round().tolist()}")
    print(f"{mode} example yhat: {yhat_raw[0, 50:60].round().tolist()}")
    return epoch_loss / len(loader), l1 / len(loader), l1_voiced / len(loader)


@hydra.main(config_path=dir_path, config_name="pitch_predictor.yaml")
def main(cfg):
    np.random.seed(1)
    random.seed(1)
    torch.manual_seed(1)
    from hydra.core.hydra_config import HydraConfig

    overrides = {
        x.split("=")[0]: x.split("=")[1]
        for x in HydraConfig.get().overrides.task
        if "/" not in x
    }
    print(f"{cfg}")
    train(cfg)


if __name__ == "__main__":
    main()