File size: 17,849 Bytes
010952f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
import logging
import os
import random
import sys
from collections import defaultdict
import hydra
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from einops.layers.torch import Rearrange
from scipy.io.wavfile import read
from scipy.ndimage import gaussian_filter1d
from torch.utils.data import DataLoader, Dataset
from tqdm import tqdm
dir_path = os.path.dirname(__file__)
resynth_path = os.path.dirname(dir_path) + "/speech-resynthesis"
sys.path.append(resynth_path)
from dataset import parse_speaker, parse_style
from .utils import F0Stat
MAX_WAV_VALUE = 32768.0
logger = logging.getLogger(__name__)
def quantize_f0(speaker_to_f0, nbins, normalize, log):
f0_all = []
for speaker, f0 in speaker_to_f0.items():
f0 = f0.raw_data
if log:
f0 = f0.log()
mean = speaker_to_f0[speaker].mean_log if log else speaker_to_f0[speaker].mean
std = speaker_to_f0[speaker].std_log if log else speaker_to_f0[speaker].std
if normalize == "mean":
f0 = f0 - mean
elif normalize == "meanstd":
f0 = (f0 - mean) / std
f0_all.extend(f0.tolist())
hist, bin_x = np.histogram(f0_all, 100000)
cum_hist = np.cumsum(hist) / len(f0_all) * 100
bin_offset = []
bin_size = 100 / nbins
threshold = bin_size
for i in range(nbins - 1):
index = (np.abs(cum_hist - threshold)).argmin()
bin_offset.append(bin_x[index])
threshold += bin_size
bins = np.array(bin_offset)
bins = torch.FloatTensor(bins)
return bins
def save_ckpt(model, path, model_class, f0_min, f0_max, f0_bins, speaker_stats):
ckpt = {
"state_dict": model.state_dict(),
"padding_token": model.padding_token,
"model_class": model_class,
"speaker_stats": speaker_stats,
"f0_min": f0_min,
"f0_max": f0_max,
"f0_bins": f0_bins,
}
torch.save(ckpt, path)
def load_ckpt(path):
ckpt = torch.load(path)
ckpt["model_class"]["_target_"] = "emotion_models.pitch_predictor.CnnPredictor"
model = hydra.utils.instantiate(ckpt["model_class"])
model.load_state_dict(ckpt["state_dict"])
model.setup_f0_stats(
ckpt["f0_min"],
ckpt["f0_max"],
ckpt["f0_bins"],
ckpt["speaker_stats"],
)
return model
def freq2bin(f0, f0_min, f0_max, bins):
f0 = f0.clone()
f0[f0 < f0_min] = f0_min
f0[f0 > f0_max] = f0_max
f0 = torch.bucketize(f0, bins)
return f0
def bin2freq(x, f0_min, f0_max, bins, mode):
n_bins = len(bins) + 1
assert x.shape[-1] == n_bins
bins = torch.cat([torch.tensor([f0_min]), bins]).to(x.device)
if mode == "mean":
f0 = (x * bins).sum(-1, keepdims=True) / x.sum(-1, keepdims=True)
elif mode == "argmax":
idx = F.one_hot(x.argmax(-1), num_classes=n_bins)
f0 = (idx * bins).sum(-1, keepdims=True)
else:
raise NotImplementedError()
return f0[..., 0]
def load_wav(full_path):
sampling_rate, data = read(full_path)
return data, sampling_rate
def l1_loss(input, target):
return F.l1_loss(input=input.float(), target=target.float(), reduce=False)
def l2_loss(input, target):
return F.mse_loss(input=input.float(), target=target.float(), reduce=False)
class Collator:
def __init__(self, padding_idx):
self.padding_idx = padding_idx
def __call__(self, batch):
tokens = [item[0] for item in batch]
lengths = [len(item) for item in tokens]
tokens = torch.nn.utils.rnn.pad_sequence(
tokens, batch_first=True, padding_value=self.padding_idx
)
f0 = [item[1] for item in batch]
f0 = torch.nn.utils.rnn.pad_sequence(
f0, batch_first=True, padding_value=self.padding_idx
)
f0_raw = [item[2] for item in batch]
f0_raw = torch.nn.utils.rnn.pad_sequence(
f0_raw, batch_first=True, padding_value=self.padding_idx
)
spk = [item[3] for item in batch]
spk = torch.LongTensor(spk)
gst = [item[4] for item in batch]
gst = torch.LongTensor(gst)
mask = tokens != self.padding_idx
return tokens, f0, f0_raw, spk, gst, mask, lengths
class CnnPredictor(nn.Module):
def __init__(
self,
n_tokens,
emb_dim,
channels,
kernel,
dropout,
n_layers,
spk_emb,
gst_emb,
n_bins,
f0_pred,
f0_log,
f0_norm,
):
super(CnnPredictor, self).__init__()
self.n_tokens = n_tokens
self.emb_dim = emb_dim
self.f0_log = f0_log
self.f0_pred = f0_pred
self.padding_token = n_tokens
self.f0_norm = f0_norm
# add 1 extra embedding for padding token, set the padding index to be the last token
# (tokens from the clustering start at index 0)
self.token_emb = nn.Embedding(
n_tokens + 1, emb_dim, padding_idx=self.padding_token
)
self.spk_emb = spk_emb
self.gst_emb = nn.Embedding(20, gst_emb)
self.setup = False
feats = emb_dim + gst_emb
# feats = emb_dim + gst_emb + (256 if spk_emb else 0)
layers = [
nn.Sequential(
Rearrange("b t c -> b c t"),
nn.Conv1d(
feats, channels, kernel_size=kernel, padding=(kernel - 1) // 2
),
Rearrange("b c t -> b t c"),
nn.ReLU(),
nn.LayerNorm(channels),
nn.Dropout(dropout),
)
]
for _ in range(n_layers - 1):
layers += [
nn.Sequential(
Rearrange("b t c -> b c t"),
nn.Conv1d(
channels,
channels,
kernel_size=kernel,
padding=(kernel - 1) // 2,
),
Rearrange("b c t -> b t c"),
nn.ReLU(),
nn.LayerNorm(channels),
nn.Dropout(dropout),
)
]
self.conv_layer = nn.ModuleList(layers)
self.proj = nn.Linear(channels, n_bins)
def forward(self, x, gst=None):
x = self.token_emb(x)
feats = [x]
if gst is not None:
gst = self.gst_emb(gst)
gst = rearrange(gst, "b c -> b c 1")
gst = F.interpolate(gst, x.shape[1])
gst = rearrange(gst, "b c t -> b t c")
feats.append(gst)
x = torch.cat(feats, dim=-1)
for i, conv in enumerate(self.conv_layer):
if i != 0:
x = conv(x) + x
else:
x = conv(x)
x = self.proj(x)
x = x.squeeze(-1)
if self.f0_pred == "mean":
x = torch.sigmoid(x)
elif self.f0_pred == "argmax":
x = torch.softmax(x, dim=-1)
else:
raise NotImplementedError
return x
def setup_f0_stats(self, f0_min, f0_max, f0_bins, speaker_stats):
self.f0_min = f0_min
self.f0_max = f0_max
self.f0_bins = f0_bins
self.speaker_stats = speaker_stats
self.setup = True
def inference(self, x, spk_id=None, gst=None):
assert (
self.setup == True
), "make sure that `setup_f0_stats` was called before inference!"
probs = self(x, gst)
f0 = bin2freq(probs, self.f0_min, self.f0_max, self.f0_bins, self.f0_pred)
for i in range(f0.shape[0]):
mean = (
self.speaker_stats[spk_id[i].item()].mean_log
if self.f0_log
else self.speaker_stats[spk_id[i].item()].mean
)
std = (
self.speaker_stats[spk_id[i].item()].std_log
if self.f0_log
else self.speaker_stats[spk_id[i].item()].std
)
if self.f0_norm == "mean":
f0[i] = f0[i] + mean
if self.f0_norm == "meanstd":
f0[i] = (f0[i] * std) + mean
if self.f0_log:
f0 = f0.exp()
return f0
class PitchDataset(Dataset):
def __init__(
self,
tsv_path,
km_path,
substring,
spk,
spk2id,
gst,
gst2id,
f0_bins,
f0_bin_type,
f0_smoothing,
f0_norm,
f0_log,
):
lines = open(tsv_path, "r").readlines()
self.root, self.tsv = lines[0], lines[1:]
self.root = self.root.strip()
self.km = open(km_path, "r").readlines()
print(f"loaded {len(self.km)} files")
self.spk = spk
self.spk2id = spk2id
self.gst = gst
self.gst2id = gst2id
self.f0_bins = f0_bins
self.f0_smoothing = f0_smoothing
self.f0_norm = f0_norm
self.f0_log = f0_log
if substring != "":
tsv, km = [], []
for tsv_line, km_line in zip(self.tsv, self.km):
if substring.lower() in tsv_line.lower():
tsv.append(tsv_line)
km.append(km_line)
self.tsv, self.km = tsv, km
print(f"after filtering: {len(self.km)} files")
self.speaker_stats = self._compute_f0_stats()
self.f0_min, self.f0_max = self._compute_f0_minmax()
if f0_bin_type == "adaptive":
self.f0_bins = quantize_f0(
self.speaker_stats, self.f0_bins, self.f0_norm, self.f0_log
)
elif f0_bin_type == "uniform":
self.f0_bins = torch.linspace(self.f0_min, self.f0_max, self.f0_bins + 1)[
1:-1
]
else:
raise NotImplementedError
print(f"f0 min: {self.f0_min}, f0 max: {self.f0_max}")
print(f"bins: {self.f0_bins} (shape: {self.f0_bins.shape})")
def __len__(self):
return len(self.km)
def _load_f0(self, tsv_line):
tsv_line = tsv_line.split("\t")[0]
f0 = self.root + "/" + tsv_line.replace(".wav", ".yaapt.f0.npy")
f0 = np.load(f0)
f0 = torch.FloatTensor(f0)
return f0
def _preprocess_f0(self, f0, spk):
mask = f0 != -999999 # process all frames
# mask = (f0 != 0) # only process voiced frames
mean = (
self.speaker_stats[spk].mean_log
if self.f0_log
else self.speaker_stats[spk].mean
)
std = (
self.speaker_stats[spk].std_log
if self.f0_log
else self.speaker_stats[spk].std
)
if self.f0_log:
f0[f0 == 0] = 1e-5
f0[mask] = f0[mask].log()
if self.f0_norm == "mean":
f0[mask] = f0[mask] - mean
if self.f0_norm == "meanstd":
f0[mask] = (f0[mask] - mean) / std
return f0
def _compute_f0_minmax(self):
f0_min, f0_max = float("inf"), -float("inf")
for tsv_line in tqdm(self.tsv, desc="computing f0 minmax"):
spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
f0 = self._load_f0(tsv_line)
f0 = self._preprocess_f0(f0, spk)
f0_min = min(f0_min, f0.min().item())
f0_max = max(f0_max, f0.max().item())
return f0_min, f0_max
def _compute_f0_stats(self):
from functools import partial
speaker_stats = defaultdict(partial(F0Stat, True))
for tsv_line in tqdm(self.tsv, desc="computing speaker stats"):
spk = self.spk2id[parse_speaker(tsv_line, self.spk)]
f0 = self._load_f0(tsv_line)
mask = f0 != 0
f0 = f0[mask] # compute stats only on voiced parts
speaker_stats[spk].update(f0)
return speaker_stats
def __getitem__(self, i):
x = self.km[i]
x = x.split(" ")
x = list(map(int, x))
x = torch.LongTensor(x)
gst = parse_style(self.tsv[i], self.gst)
gst = self.gst2id[gst]
spk = parse_speaker(self.tsv[i], self.spk)
spk = self.spk2id[spk]
f0_raw = self._load_f0(self.tsv[i])
f0 = self._preprocess_f0(f0_raw.clone(), spk)
f0 = F.interpolate(f0.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]
f0_raw = F.interpolate(f0_raw.unsqueeze(0).unsqueeze(0), x.shape[0])[0, 0]
f0 = freq2bin(f0, f0_min=self.f0_min, f0_max=self.f0_max, bins=self.f0_bins)
f0 = F.one_hot(f0.long(), num_classes=len(self.f0_bins) + 1).float()
if self.f0_smoothing > 0:
f0 = torch.tensor(
gaussian_filter1d(f0.float().numpy(), sigma=self.f0_smoothing)
)
return x, f0, f0_raw, spk, gst
def train(cfg):
device = "cuda:0"
# add 1 extra embedding for padding token, set the padding index to be the last token
# (tokens from the clustering start at index 0)
padding_token = cfg.n_tokens
collate_fn = Collator(padding_idx=padding_token)
train_ds = PitchDataset(
cfg.train_tsv,
cfg.train_km,
substring=cfg.substring,
spk=cfg.spk,
spk2id=cfg.spk2id,
gst=cfg.gst,
gst2id=cfg.gst2id,
f0_bins=cfg.f0_bins,
f0_bin_type=cfg.f0_bin_type,
f0_smoothing=cfg.f0_smoothing,
f0_norm=cfg.f0_norm,
f0_log=cfg.f0_log,
)
valid_ds = PitchDataset(
cfg.valid_tsv,
cfg.valid_km,
substring=cfg.substring,
spk=cfg.spk,
spk2id=cfg.spk2id,
gst=cfg.gst,
gst2id=cfg.gst2id,
f0_bins=cfg.f0_bins,
f0_bin_type=cfg.f0_bin_type,
f0_smoothing=cfg.f0_smoothing,
f0_norm=cfg.f0_norm,
f0_log=cfg.f0_log,
)
train_dl = DataLoader(
train_ds,
num_workers=0,
batch_size=cfg.batch_size,
shuffle=True,
collate_fn=collate_fn,
)
valid_dl = DataLoader(
valid_ds, num_workers=0, batch_size=16, shuffle=False, collate_fn=collate_fn
)
f0_min = train_ds.f0_min
f0_max = train_ds.f0_max
f0_bins = train_ds.f0_bins
speaker_stats = train_ds.speaker_stats
model = hydra.utils.instantiate(cfg["model"]).to(device)
model.setup_f0_stats(f0_min, f0_max, f0_bins, speaker_stats)
optimizer = hydra.utils.instantiate(cfg.optimizer, model.parameters())
best_loss = float("inf")
for epoch in range(cfg.epochs):
train_loss, train_l2_loss, train_l2_voiced_loss = run_epoch(
model, train_dl, optimizer, device, cfg, mode="train"
)
valid_loss, valid_l2_loss, valid_l2_voiced_loss = run_epoch(
model, valid_dl, None, device, cfg, mode="valid"
)
print(
f"[epoch {epoch}] train loss: {train_loss:.3f}, l2 loss: {train_l2_loss:.3f}, l2 voiced loss: {train_l2_voiced_loss:.3f}"
)
print(
f"[epoch {epoch}] valid loss: {valid_loss:.3f}, l2 loss: {valid_l2_loss:.3f}, l2 voiced loss: {valid_l2_voiced_loss:.3f}"
)
if valid_l2_voiced_loss < best_loss:
path = f"{os.getcwd()}/pitch_predictor.ckpt"
save_ckpt(model, path, cfg["model"], f0_min, f0_max, f0_bins, speaker_stats)
best_loss = valid_l2_voiced_loss
print(f"saved checkpoint: {path}")
print(f"[epoch {epoch}] best loss: {best_loss:.3f}")
def run_epoch(model, loader, optimizer, device, cfg, mode):
if mode == "train":
model.train()
else:
model.eval()
epoch_loss = 0
l1 = 0
l1_voiced = 0
for x, f0_bin, f0_raw, spk_id, gst, mask, _ in tqdm(loader):
x, f0_bin, f0_raw, spk_id, gst, mask = (
x.to(device),
f0_bin.to(device),
f0_raw.to(device),
spk_id.to(device),
gst.to(device),
mask.to(device),
)
b, t, n_bins = f0_bin.shape
yhat = model(x, gst)
nonzero_mask = (f0_raw != 0).logical_and(mask)
yhat_raw = model.inference(x, spk_id, gst)
expanded_mask = mask.unsqueeze(-1).expand(-1, -1, n_bins)
if cfg.f0_pred == "mean":
loss = F.binary_cross_entropy(
yhat[expanded_mask], f0_bin[expanded_mask]
).mean()
elif cfg.f0_pred == "argmax":
loss = F.cross_entropy(
rearrange(yhat, "b t d -> (b t) d"),
rearrange(f0_bin.argmax(-1), "b t -> (b t)"),
reduce=False,
)
loss = rearrange(loss, "(b t) -> b t", b=b, t=t)
loss = (loss * mask).sum() / mask.float().sum()
else:
raise NotImplementedError
l1 += F.l1_loss(yhat_raw[mask], f0_raw[mask]).item()
l1_voiced += F.l1_loss(yhat_raw[nonzero_mask], f0_raw[nonzero_mask]).item()
epoch_loss += loss.item()
if mode == "train":
loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
print(f"{mode} example y: {f0_bin.argmax(-1)[0, 50:60].tolist()}")
print(f"{mode} example yhat: {yhat.argmax(-1)[0, 50:60].tolist()}")
print(f"{mode} example y: {f0_raw[0, 50:60].round().tolist()}")
print(f"{mode} example yhat: {yhat_raw[0, 50:60].round().tolist()}")
return epoch_loss / len(loader), l1 / len(loader), l1_voiced / len(loader)
@hydra.main(config_path=dir_path, config_name="pitch_predictor.yaml")
def main(cfg):
np.random.seed(1)
random.seed(1)
torch.manual_seed(1)
from hydra.core.hydra_config import HydraConfig
overrides = {
x.split("=")[0]: x.split("=")[1]
for x in HydraConfig.get().overrides.task
if "/" not in x
}
print(f"{cfg}")
train(cfg)
if __name__ == "__main__":
main()
|