### NormFormer This is the code for the ["NormFormer: Improved Transformer Pretraining with Extra Normalization"](https://arxiv.org/abs/2110.09456) - 2021-10-19: Commands for CLM Experiments - Coming soon: Commands for MLM experiments If you have any issues or questions please post a github issue and tag `@sshleifer`. ### Data - To preprocess language modeling data, see [here](https://github.com/pytorch/fairseq/blob/d0fbcb0baef6f6ff3425ded62d8daea0e8b12114/examples/language_model/README.md#1-preprocess-the-data). - The replication commands below expect `$DATA` to be the path to the binarized data directory. - Note that NormFormer results in Table 2 use a much larger private dataset, and to get good results you should adapt the pre-processing instructions to your dataset and compare to a baseline on the same data, rather than Table 2. - The code uses `FSDP`, which requires `pip install fairscale>=0.4.0`. ### Modify existing Command To modify an existing `fairseq-train` command to use NormFormer, simply add the following flags: ```bash fairseq-train ... \ --scale-attn --scale-fc --scale-heads ``` - you probably also want to increase your learning rate - if your model is small, you may want to add `--scale-resids` ### Exact Training Commands - Note that NormFormer results in Table 2 use a much larger private dataset, and to get good results you should adapt the pre-processing instructions to your dataset. The full commands are functions defined here, so to run them you must `source examples/normformer/train_lm.sh`. - We default `--distributed-world-size 8`. You should adjust `--update-freq` and `--batch-size` and such that the effective batch size is (1024x1024x0.5) tokens for 125M and 355M, and (1024x1024) for 1.3B parameter and above. For small models, `--update-freq`=256/`global_bs`. For large models, `--update-freq`=512/`global_bs`, where `global_bs` = `--batch-size` * `--distributed-world-size` - The small models will all train on as few as 8 GPUs. ```bash train_125M --lr 6e-4 # GPT-3 Replicated train_125M --lr 1e-3 # stronger high-lr baseline train_125M --lr 3e-3 --scale-attn --scale-fc --scale-heads # No scale-resids train_125M --lr 3e-3 --scale-attn --scale-fc --scale-heads --scale-resids # Best command ``` ```bash train_355M --lr 6e-4 # GPT-3 Replicated train_355M --lr 1e-3 # stronger high-lr baseline train_355M --lr 1e-3 --scale-attn --scale-fc --scale-heads # No scale-resids train_355M --lr 1e-3 --scale-attn --scale-fc --scale-heads --scale-resids # Slightly better ``` ```bash train_1.3B --lr 2e-4 # GPT-3 Replicated train_1.3B --lr 6e-4 # stronger high-lr baseline train_1.3B --lr 6e-4 --scale-attn --scale-fc --scale-heads # NormFormer ``` ```bash train_2.7B --lr 1.6e-4 # GPT-3 Replicated train_2.7B --lr 1.6e-4 --activation-fn relu_squared # stronger Relu^2 baseline train_2.7B --lr 6e-4 --activation-fn relu_squared --scale-attn --scale-fc --scale-heads # NormFormer 2.7B ``` ### Citation ```bibtex @misc{shleifer2021normformer, title={NormFormer: Improved Transformer Pretraining with Extra Normalization}, author={Sam Shleifer and Jason Weston and Myle Ott}, year={2021}, eprint={2110.09456}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```