--- license: apache-2.0 tags: - generated_from_trainer metrics: - wer base_model: facebook/wav2vec2-xls-r-300m model-index: - name: wav2vec2-large-xls-r-300m-finetune-dali results: [] --- # wav2vec2-large-xls-r-300m-finetune-dali This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.2332 - Wer: 0.7088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 9.1246 | 0.49 | 100 | 4.0976 | 1.0 | | 4.5372 | 0.97 | 200 | 3.2580 | 1.0 | | 3.2467 | 1.46 | 300 | 3.0922 | 1.0001 | | 3.4683 | 1.94 | 400 | 2.7944 | 0.9588 | | 2.56 | 2.43 | 500 | 2.7701 | 0.9228 | | 3.5665 | 2.91 | 600 | 2.7017 | 0.9356 | | 3.5163 | 3.4 | 700 | 2.6731 | 0.9019 | | 2.7201 | 3.88 | 800 | 2.7024 | 0.9067 | | 3.1927 | 4.37 | 900 | 2.7681 | 0.9083 | | 2.6796 | 4.85 | 1000 | 2.6577 | 0.8902 | | 2.7204 | 5.34 | 1100 | 2.5810 | 0.8899 | | 2.8474 | 5.83 | 1200 | 2.6795 | 0.9008 | | 3.4242 | 6.31 | 1300 | 2.5315 | 0.8699 | | 2.6685 | 6.8 | 1400 | 2.6477 | 0.8743 | | 2.8734 | 7.28 | 1500 | 2.6630 | 0.8772 | | 3.0146 | 7.77 | 1600 | 2.5337 | 0.8667 | | 2.1542 | 8.25 | 1700 | 2.5623 | 0.8345 | | 2.8927 | 8.74 | 1800 | 2.4624 | 0.8185 | | 2.4501 | 9.22 | 1900 | 2.5193 | 0.8196 | | 2.5283 | 9.71 | 2000 | 2.5110 | 0.8231 | | 2.7019 | 10.19 | 2100 | 2.5571 | 0.7776 | | 1.8019 | 10.68 | 2200 | 2.4725 | 0.7735 | | 1.8982 | 11.17 | 2300 | 2.5294 | 0.7662 | | 1.553 | 11.65 | 2400 | 2.5773 | 0.7662 | | 1.6364 | 12.14 | 2500 | 2.5883 | 0.7568 | | 1.9175 | 12.62 | 2600 | 2.4496 | 0.7405 | | 1.5186 | 13.11 | 2700 | 2.4917 | 0.7410 | | 1.911 | 13.59 | 2800 | 2.4941 | 0.7280 | | 1.389 | 14.08 | 2900 | 2.4738 | 0.7187 | | 1.2499 | 14.56 | 3000 | 2.5277 | 0.7236 | | 1.3069 | 15.05 | 3100 | 2.5051 | 0.7291 | | 1.1218 | 15.53 | 3200 | 2.6532 | 0.7207 | | 1.2423 | 16.02 | 3300 | 2.5690 | 0.7197 | | 1.0828 | 16.5 | 3400 | 2.6145 | 0.7216 | | 1.0926 | 16.99 | 3500 | 2.5524 | 0.7114 | | 1.0012 | 17.48 | 3600 | 2.5685 | 0.7108 | | 0.9849 | 17.96 | 3700 | 2.6362 | 0.7081 | | 0.9141 | 18.45 | 3800 | 2.6395 | 0.7151 | | 0.9115 | 18.93 | 3900 | 2.6901 | 0.7051 | | 0.8355 | 19.42 | 4000 | 2.6799 | 0.7150 | | 0.8134 | 19.9 | 4100 | 2.8110 | 0.7091 | | 0.7593 | 20.39 | 4200 | 2.8204 | 0.7123 | | 0.7528 | 20.87 | 4300 | 2.8369 | 0.7067 | | 0.6899 | 21.36 | 4400 | 2.7883 | 0.7138 | | 0.6799 | 21.84 | 4500 | 2.8745 | 0.7088 | | 0.6268 | 22.33 | 4600 | 2.9128 | 0.7137 | | 0.5877 | 22.82 | 4700 | 2.9422 | 0.7111 | | 0.5789 | 23.3 | 4800 | 2.9755 | 0.7143 | | 0.5338 | 23.79 | 4900 | 2.9797 | 0.7115 | | 0.5143 | 24.27 | 5000 | 3.0170 | 0.7230 | | 0.5019 | 24.76 | 5100 | 3.0441 | 0.7161 | | 0.4791 | 25.24 | 5200 | 3.1360 | 0.7084 | | 0.4557 | 25.73 | 5300 | 3.1516 | 0.7090 | | 0.4293 | 26.21 | 5400 | 3.1535 | 0.7195 | | 0.4116 | 26.7 | 5500 | 3.1685 | 0.7177 | | 0.4108 | 27.18 | 5600 | 3.1756 | 0.7081 | | 0.4012 | 27.67 | 5700 | 3.1828 | 0.7093 | | 0.3753 | 28.16 | 5800 | 3.2102 | 0.7057 | | 0.3605 | 28.64 | 5900 | 3.2137 | 0.7044 | | 0.3678 | 29.13 | 6000 | 3.2202 | 0.7107 | | 0.3541 | 29.61 | 6100 | 3.2332 | 0.7088 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2