--- license: apache-2.0 tags: - code --- # Fine-tuned Qwen2.5-Coder-7B for Function Writing ## Model Description This model is a fine-tuned version of Qwen2.5-Coder-7B, specifically optimized for function writing tasks. The base model Qwen2.5-Coder-7B is part of the Qwen2.5-Coder family, which was trained on 5.5 trillion tokens including source code, text-code grounding, and synthetic data. ### Base Model Details * **Type**: Causal Language Model * **Architecture**: Transformers with RoPE, SwiGLU, RMSNorm, and Attention QKV bias * **Parameters**: 7.61B (6.53B Non-Embedding) * **Layers**: 28 * **Attention Heads**: 28 for Q and 4 for KV * **Context Length**: Up to 131,072 tokens ## Fine-tuning Specifications The model was fine-tuned using LoRA (Low-Rank Adaptation) with the following configuration: ### Training Parameters * **Training Data**: 30,000 examples * **Batch Size**: 1 per device * **Gradient Accumulation Steps**: 24 * **Learning Rate**: 1e-6 * **Number of Epochs**: 2 * **Warmup Ratio**: 0.05 * **Maximum Sequence Length**: 4,096 tokens * **Weight Decay**: 0.01 * **Maximum Gradient Norm**: 0.5 * **Learning Rate Scheduler**: Cosine ### LoRA Configuration * **Rank (r)**: 32 * **Alpha**: 32 * **Dropout**: 0.05 * **Target Modules**: q_proj, v_proj, o_proj, gate_proj, up_proj * **Training Mode**: BF16 mixed precision * **RS-LoRA**: Enabled ### Training Infrastructure * **Quantization**: 4-bit quantization (NF4) * **Attention Implementation**: Flash Attention 2 * **Memory Optimization**: Gradient checkpointing enabled ## Usage This model is optimized for function writing tasks and can be loaded using the Hugging Face Transformers library. Here's a basic example: ```python from transformers import AutoModelForCausalLM, AutoTokenizer # Load the model and tokenizer model = AutoModelForCausalLM.from_pretrained( "path_to_your_model", trust_remote_code=True, torch_dtype=torch.bfloat16, device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained( "path_to_your_model", trust_remote_code=True ) # Generate text input_text = "Write a function that..." inputs = tokenizer(input_text, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=500) response = tokenizer.decode(outputs[0], skip_special_tokens=True) ``` ## Limitations * The model is specifically fine-tuned for function writing tasks and may not perform optimally for general code generation or other tasks * Maximum context length during fine-tuning was limited to 4,096 tokens * While the base model supports up to 128K tokens, using beyond 4,096 tokens may require additional validation ## License This model inherits the Apache 2.0 license from its base model Qwen2.5-Coder-7B. ## Citation If you use this model, please cite both the original Qwen2.5-Coder paper and acknowledge the fine-tuning work: ```bibtex @article{hui2024qwen2, title={Qwen2.5-Coder Technical Report}, author={Hui, Binyuan and Yang, Jian and Cui, Zeyu and Yang, Jiaxi and Liu, Dayiheng and Zhang, Lei and Liu, Tianyu and Zhang, Jiajun and Yu, Bowen and Dang, Kai and others}, journal={arXiv preprint arXiv:2409.12186}, year={2024} } ```