Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,49 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
metrics:
|
4 |
+
- accuracy
|
5 |
+
base_model:
|
6 |
+
- google/vit-base-patch16-224-in21k
|
7 |
+
pipeline_tag: image-classification
|
8 |
+
---
|
9 |
+
# Deepfake Image Detection Using Fine-Tuned Vision Transformer (ViT)
|
10 |
+
This project focuses on detecting **deepfake images** using a fine-tuned version of the pre-trained model `google/vit-base-patch16-224-in21k`. The approach leverages the power of Vision Transformers (ViT) to classify images as real or fake.
|
11 |
+
|
12 |
+
## **Model Overview**
|
13 |
+
- **Base Model**: [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
|
14 |
+
- **Dataset**: [deepfake and real images](https://www.kaggle.com/datasets/manjilkarki/deepfake-and-real-images).
|
15 |
+
- **Classes**: Binary classification (`Fake`, `Real`)
|
16 |
+
- **Performance**:
|
17 |
+
- **Validation Accuracy**: 97%
|
18 |
+
- **Test Accuracy**: 92%
|
19 |
+
|
20 |
+
*Figure 1: Confusion matrix for test data*
|
21 |
+
|
22 |
+

|
23 |
+
|
24 |
+
*Figure 2: Confusion matrix for validation data*
|
25 |
+
|
26 |
+

|
27 |
+
|
28 |
+
### How to Use the Model
|
29 |
+
|
30 |
+
Below is an example of how to load and use the model for deepfake classification:
|
31 |
+
|
32 |
+
```python
|
33 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassificationimport torch
|
34 |
+
import torch
|
35 |
+
from PIL import Image
|
36 |
+
|
37 |
+
# Load the image_processor and model
|
38 |
+
image_processor = AutoImageProcessor.from_pretrained('ashish-001/deepfake-detection-using-ViT')
|
39 |
+
model = AutoModelForImageClassification.from_pretrained('ashish-001/deepfake-detection-using-ViT')
|
40 |
+
# Example usage
|
41 |
+
image = Image.open('path of the image')
|
42 |
+
inputs = image_processor(images=image, return_tensors="pt")
|
43 |
+
outputs = model(**inputs)
|
44 |
+
logits = outputs.logits
|
45 |
+
pred = torch.argmax(logits, dim=1).item()
|
46 |
+
label = 'Real' if pred == 1 else 'Fake'
|
47 |
+
print(f"Predicted type: {Label}")
|
48 |
+
|
49 |
+
|