ashish-001 commited on
Commit
4f66d78
·
verified ·
1 Parent(s): 0dd8e51

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +49 -3
README.md CHANGED
@@ -1,3 +1,49 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ metrics:
4
+ - accuracy
5
+ base_model:
6
+ - google/vit-base-patch16-224-in21k
7
+ pipeline_tag: image-classification
8
+ ---
9
+ # Deepfake Image Detection Using Fine-Tuned Vision Transformer (ViT)
10
+ This project focuses on detecting **deepfake images** using a fine-tuned version of the pre-trained model `google/vit-base-patch16-224-in21k`. The approach leverages the power of Vision Transformers (ViT) to classify images as real or fake.
11
+
12
+ ## **Model Overview**
13
+ - **Base Model**: [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k)
14
+ - **Dataset**: [deepfake and real images](https://www.kaggle.com/datasets/manjilkarki/deepfake-and-real-images).
15
+ - **Classes**: Binary classification (`Fake`, `Real`)
16
+ - **Performance**:
17
+ - **Validation Accuracy**: 97%
18
+ - **Test Accuracy**: 92%
19
+
20
+ *Figure 1: Confusion matrix for test data*
21
+
22
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ab80ef59559493941225/Qz4oHFhs8FQNFkf5c97Sg.png)
23
+
24
+ *Figure 2: Confusion matrix for validation data*
25
+
26
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6585ab80ef59559493941225/mYtuHWMIJOVFk8uI_RlPU.png)
27
+
28
+ ### How to Use the Model
29
+
30
+ Below is an example of how to load and use the model for deepfake classification:
31
+
32
+ ```python
33
+ from transformers import AutoImageProcessor, AutoModelForImageClassificationimport torch
34
+ import torch
35
+ from PIL import Image
36
+
37
+ # Load the image_processor and model
38
+ image_processor = AutoImageProcessor.from_pretrained('ashish-001/deepfake-detection-using-ViT')
39
+ model = AutoModelForImageClassification.from_pretrained('ashish-001/deepfake-detection-using-ViT')
40
+ # Example usage
41
+ image = Image.open('path of the image')
42
+ inputs = image_processor(images=image, return_tensors="pt")
43
+ outputs = model(**inputs)
44
+ logits = outputs.logits
45
+ pred = torch.argmax(logits, dim=1).item()
46
+ label = 'Real' if pred == 1 else 'Fake'
47
+ print(f"Predicted type: {Label}")
48
+
49
+