ashok2216 commited on
Commit
e1990fe
·
verified ·
1 Parent(s): a59c44b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -8
README.md CHANGED
@@ -38,7 +38,7 @@ You can use this model for image captioning tasks with the Hugging Face transfor
38
  # Installation
39
 
40
  To use this model, you need to install the following libraries:
41
-
42
  bash
43
  Copy code
44
  pip install torch torchvision transformers
@@ -48,20 +48,20 @@ Copy code
48
  from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2Tokenizer
49
  import torch
50
  from PIL import Image
51
-
52
  # Load the fine-tuned model and tokenizer
53
-
54
  model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
55
  processor = ViTImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
56
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
57
-
58
  # Preprocess the image
59
-
60
  image = Image.open("path_to_image.jpg")
61
  inputs = processor(images=image, return_tensors="pt")
62
-
63
  # Generate caption
64
-
65
  pixel_values = inputs.pixel_values
66
  output = model.generate(pixel_values)
67
  caption = tokenizer.decode(output[0], skip_special_tokens=True)
@@ -72,7 +72,7 @@ Image Input: The input should be an image file. Supported formats include .jpg,
72
  Output: A text string representing the generated caption for the image.
73
  Example
74
  For an input image, the model might generate a caption like:
75
-
76
  # Input Image:
77
 
78
  Generated Caption:
 
38
  # Installation
39
 
40
  To use this model, you need to install the following libraries:
41
+ ```python
42
  bash
43
  Copy code
44
  pip install torch torchvision transformers
 
48
  from transformers import VisionEncoderDecoderModel, ViTImageProcessor, GPT2Tokenizer
49
  import torch
50
  from PIL import Image
51
+ ```
52
  # Load the fine-tuned model and tokenizer
53
+ ```python
54
  model = VisionEncoderDecoderModel.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
55
  processor = ViTImageProcessor.from_pretrained("ashok2216/vit-gpt2-image-captioning_COCO_FineTuned")
56
  tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
57
+ ```
58
  # Preprocess the image
59
+ ```python
60
  image = Image.open("path_to_image.jpg")
61
  inputs = processor(images=image, return_tensors="pt")
62
+ ```
63
  # Generate caption
64
+ ```python
65
  pixel_values = inputs.pixel_values
66
  output = model.generate(pixel_values)
67
  caption = tokenizer.decode(output[0], skip_special_tokens=True)
 
72
  Output: A text string representing the generated caption for the image.
73
  Example
74
  For an input image, the model might generate a caption like:
75
+ ```
76
  # Input Image:
77
 
78
  Generated Caption: