--- library_name: setfit tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer base_model: sentence-transformers/paraphrase-MiniLM-L3-v2 datasets: - ag_news metrics: - accuracy widget: - text: Pakistani, US national arrested in New York bomb plot (AFP) AFP - A Pakistani national and a US citizen were arrested over an alleged plot to blow up a subway station in New York, city police commissioner Raymond Kelly said. - text: 'Aon #39;comfortable #39; with past behaviour Aon, the world #39;s second largest insurance broker, yesterday denied its brokers had ever steered business to favoured insurance companies as a way of generating bigger commissions.' - text: President Blasts Firing Notre Dame's outgoing president criticized the decision to fire Tyrone Willingham after just three seasons, saying he was surprised the coach was not given more time to try to succeed. - text: 'Gold Fields investors snub bid Harmony #39;s bid to create the world #39;s biggest gold miner suffered a blow yesterday when the first part of its offer for South African rival Gold Fields received a lukewarm reception from shareholders.' - text: Blood, knives, cage hint at atrocities (Chicago Tribune) Chicago Tribune - Acting on information from a man who claimed to have escaped from militant Abu Musab al-Zarqawi's network, the U.S. military over the weekend inspected a house where intelligence officers believe hostages were detained, tortured and possibly killed. pipeline_tag: text-classification inference: true --- # SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2 This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [ag_news](https://huggingface.co/datasets/ag_news) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [sentence-transformers/paraphrase-MiniLM-L3-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L3-v2) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 128 tokens - **Number of Classes:** 4 classes - **Training Dataset:** [ag_news](https://huggingface.co/datasets/ag_news) ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 0 | | | 1 | | | 3 | | | 2 | | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("ashry/decimal-setfit-minilm-distilled") # Run inference preds = model("President Blasts Firing Notre Dame's outgoing president criticized the decision to fire Tyrone Willingham after just three seasons, saying he was surprised the coach was not given more time to try to succeed.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:-------|:----| | Word count | 14 | 38.204 | 143 | | Label | Training Sample Count | |:------|:----------------------| | 0 | 244 | | 1 | 243 | | 2 | 242 | | 3 | 271 | ### Training Hyperparameters - batch_size: (16, 16) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - num_iterations: 20 - body_learning_rate: (2e-05, 2e-05) - head_learning_rate: 2e-05 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:----:|:-------------:|:---------------:| | 0.0008 | 1 | 0.9192 | - | | 0.04 | 50 | 0.6426 | - | | 0.08 | 100 | 0.0159 | - | | 0.12 | 150 | 0.0024 | - | | 0.16 | 200 | 0.0013 | - | | 0.2 | 250 | 0.0011 | - | | 0.24 | 300 | 0.0009 | - | | 0.28 | 350 | 0.0006 | - | | 0.32 | 400 | 0.0005 | - | | 0.36 | 450 | 0.0005 | - | | 0.4 | 500 | 0.0003 | - | | 0.44 | 550 | 0.0003 | - | | 0.48 | 600 | 0.0003 | - | | 0.52 | 650 | 0.0004 | - | | 0.56 | 700 | 0.0002 | - | | 0.6 | 750 | 0.0002 | - | | 0.64 | 800 | 0.0002 | - | | 0.68 | 850 | 0.0002 | - | | 0.72 | 900 | 0.0002 | - | | 0.76 | 950 | 0.0002 | - | | 0.8 | 1000 | 0.0002 | - | | 0.84 | 1050 | 0.0002 | - | | 0.88 | 1100 | 0.0001 | - | | 0.92 | 1150 | 0.0002 | - | | 0.96 | 1200 | 0.0002 | - | | 1.0 | 1250 | 0.0002 | - | ### Framework Versions - Python: 3.10.13 - SetFit: 1.0.3 - Sentence Transformers: 2.7.0 - Transformers: 4.39.3 - PyTorch: 2.1.2 - Datasets: 2.18.0 - Tokenizers: 0.15.2 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```