Alexander Slessor
commited on
Commit
·
c0a3632
1
Parent(s):
26bcc6f
added handler
Browse files- .gitignore +10 -0
- handler.py +141 -0
- invoice_example.png +0 -0
.gitignore
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__pycache__
|
2 |
+
*.ipynb
|
3 |
+
*.pdf
|
4 |
+
|
5 |
+
test_endpoint.py
|
6 |
+
test_handler_local.py
|
7 |
+
|
8 |
+
setup
|
9 |
+
upload_to_hf
|
10 |
+
requirements.txt
|
handler.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, List, Any
|
2 |
+
from transformers import BertForQuestionAnswering, BertTokenizer
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# set device
|
6 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
7 |
+
|
8 |
+
# def print_tokens_with_ids(tokenizer, input_ids):
|
9 |
+
# # BERT only needs the token IDs, but for the purpose of inspecting the
|
10 |
+
# # tokenizer's behavior, let's also get the token strings and display them.
|
11 |
+
# tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
12 |
+
# # For each token and its id...
|
13 |
+
# for token, id in zip(tokens, input_ids):
|
14 |
+
# # If this is the [SEP] token, add some space around it to make it stand out.
|
15 |
+
# if id == tokenizer.sep_token_id:
|
16 |
+
# print('')
|
17 |
+
# # Print the token string and its ID in two columns.
|
18 |
+
# print('{:<12} {:>6,}'.format(token, id))
|
19 |
+
# if id == tokenizer.sep_token_id:
|
20 |
+
# print('')
|
21 |
+
|
22 |
+
def get_segment_ids_aka_token_type_ids(tokenizer, input_ids):
|
23 |
+
# Search the input_ids for the first instance of the `[SEP]` token.
|
24 |
+
sep_index = input_ids.index(tokenizer.sep_token_id)
|
25 |
+
# The number of segment A tokens includes the [SEP] token istelf.
|
26 |
+
num_seg_a = sep_index + 1
|
27 |
+
# The remainder are segment B.
|
28 |
+
num_seg_b = len(input_ids) - num_seg_a
|
29 |
+
# Construct the list of 0s and 1s.
|
30 |
+
segment_ids = [0]*num_seg_a + [1]*num_seg_b
|
31 |
+
# There should be a segment_id for every input token.
|
32 |
+
assert len(segment_ids) == len(input_ids), \
|
33 |
+
'There should be a segment_id for every input token.'
|
34 |
+
return segment_ids
|
35 |
+
|
36 |
+
def to_model(
|
37 |
+
model: BertForQuestionAnswering,
|
38 |
+
input_ids,
|
39 |
+
segment_ids
|
40 |
+
) -> tuple:
|
41 |
+
# Run input through the model.
|
42 |
+
output = model(
|
43 |
+
torch.tensor([input_ids]), # The tokens representing our input text.
|
44 |
+
token_type_ids=torch.tensor([segment_ids])
|
45 |
+
)
|
46 |
+
# print(output)
|
47 |
+
# print(output.start_logits)
|
48 |
+
# print(output.end_logits)
|
49 |
+
# print(type(output))
|
50 |
+
# The segment IDs to differentiate question from answer_text
|
51 |
+
return output.start_logits, output.end_logits
|
52 |
+
#output.hidden_states
|
53 |
+
#output.attentions
|
54 |
+
#output.loss
|
55 |
+
|
56 |
+
def get_answer(
|
57 |
+
start_scores,
|
58 |
+
end_scores,
|
59 |
+
input_ids,
|
60 |
+
tokenizer: BertTokenizer
|
61 |
+
) -> str:
|
62 |
+
'''Side Note:
|
63 |
+
- It’s a little naive to pick the highest scores for start and end–what if it predicts an end word that’s before the start word?!
|
64 |
+
- The correct implementation is to pick the highest total score for which end >= start.
|
65 |
+
'''
|
66 |
+
# Find the tokens with the highest `start` and `end` scores.
|
67 |
+
answer_start = torch.argmax(start_scores)
|
68 |
+
answer_end = torch.argmax(end_scores)
|
69 |
+
|
70 |
+
# Combine the tokens in the answer and print it out.
|
71 |
+
# answer = ' '.join(tokens[answer_start:answer_end + 1])
|
72 |
+
# Get the string versions of the input tokens.
|
73 |
+
tokens = tokenizer.convert_ids_to_tokens(input_ids)
|
74 |
+
# Start with the first token.
|
75 |
+
answer = tokens[answer_start]
|
76 |
+
# print('Answer: "' + answer + '"')
|
77 |
+
# Select the remaining answer tokens and join them with whitespace.
|
78 |
+
for i in range(answer_start + 1, answer_end + 1):
|
79 |
+
# If it's a subword token, then recombine it with the previous token.
|
80 |
+
if tokens[i][0:2] == '##':
|
81 |
+
answer += tokens[i][2:]
|
82 |
+
# Otherwise, add a space then the token.
|
83 |
+
else:
|
84 |
+
answer += ' ' + tokens[i]
|
85 |
+
return answer
|
86 |
+
|
87 |
+
|
88 |
+
# def resonstruct_words(tokens, answer_start, answer_end):
|
89 |
+
# '''reconstruct any words that got broken down into subwords.
|
90 |
+
# '''
|
91 |
+
# # Start with the first token.
|
92 |
+
# answer = tokens[answer_start]
|
93 |
+
# # Select the remaining answer tokens and join them with whitespace.
|
94 |
+
# for i in range(answer_start + 1, answer_end + 1):
|
95 |
+
# # If it's a subword token, then recombine it with the previous token.
|
96 |
+
# if tokens[i][0:2] == '##':
|
97 |
+
# answer += tokens[i][2:]
|
98 |
+
# # Otherwise, add a space then the token.
|
99 |
+
# else:
|
100 |
+
# answer += ' ' + tokens[i]
|
101 |
+
# print('Answer: "' + answer + '"')
|
102 |
+
|
103 |
+
|
104 |
+
class EndpointHandler:
|
105 |
+
def __init__(self, path=""):
|
106 |
+
self.model = BertForQuestionAnswering.from_pretrained(path).to(device)
|
107 |
+
self.tokenizer = BertTokenizer.from_pretrained(path)
|
108 |
+
|
109 |
+
def __call__(
|
110 |
+
self,
|
111 |
+
data: Dict[str, str | bytes]
|
112 |
+
):
|
113 |
+
"""
|
114 |
+
Args:
|
115 |
+
data (:obj:):
|
116 |
+
includes the deserialized image file as PIL.Image
|
117 |
+
"""
|
118 |
+
question = data.pop("question", data)
|
119 |
+
context = data.pop("context", data)
|
120 |
+
|
121 |
+
input_ids = self.tokenizer.encode(question, context)
|
122 |
+
# print('The input has a total of {:} tokens.'.format(len(input_ids)))
|
123 |
+
|
124 |
+
segment_ids = get_segment_ids_aka_token_type_ids(
|
125 |
+
self.tokenizer,
|
126 |
+
input_ids
|
127 |
+
)
|
128 |
+
# run prediction
|
129 |
+
with torch.inference_mode():
|
130 |
+
start_scores, end_scores = to_model(
|
131 |
+
self.model,
|
132 |
+
input_ids,
|
133 |
+
segment_ids
|
134 |
+
)
|
135 |
+
answer = get_answer(
|
136 |
+
start_scores,
|
137 |
+
end_scores,
|
138 |
+
input_ids,
|
139 |
+
self.tokenizer
|
140 |
+
)
|
141 |
+
return answer
|
invoice_example.png
ADDED