End of training
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: dccuchile/albert-base-spanish
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- f1
|
8 |
+
- precision
|
9 |
+
- recall
|
10 |
+
model-index:
|
11 |
+
- name: albert-model-mesa-ayuda
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# albert-model-mesa-ayuda
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [dccuchile/albert-base-spanish](https://huggingface.co/dccuchile/albert-base-spanish) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3099
|
23 |
+
- Accuracy: 0.9162
|
24 |
+
- F1: 0.9148
|
25 |
+
- Precision: 0.9156
|
26 |
+
- Recall: 0.9162
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 5e-05
|
46 |
+
- train_batch_size: 28
|
47 |
+
- eval_batch_size: 28
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 5
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
57 |
+
| 0.8309 | 1.0 | 3419 | 0.8166 | 0.7809 | 0.7698 | 0.7813 | 0.7809 |
|
58 |
+
| 0.4419 | 2.0 | 6838 | 0.4836 | 0.8622 | 0.8571 | 0.8616 | 0.8622 |
|
59 |
+
| 0.2584 | 3.0 | 10257 | 0.3691 | 0.8913 | 0.8881 | 0.8913 | 0.8913 |
|
60 |
+
| 0.137 | 4.0 | 13676 | 0.3205 | 0.9093 | 0.9076 | 0.9078 | 0.9093 |
|
61 |
+
| 0.0609 | 5.0 | 17095 | 0.3099 | 0.9162 | 0.9148 | 0.9156 | 0.9162 |
|
62 |
+
|
63 |
+
|
64 |
+
### Framework versions
|
65 |
+
|
66 |
+
- Transformers 4.39.3
|
67 |
+
- Pytorch 2.2.1+cu121
|
68 |
+
- Datasets 2.18.0
|
69 |
+
- Tokenizers 0.15.2
|