--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: W2V2_Bert_BIG-C_BEMBA_5hr_v1 results: [] --- # W2V2_Bert_BIG-C_BEMBA_5hr_v1 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: inf - Wer: 0.4852 - Cer: 0.1215 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.01 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.7125 | 1.0 | 80 | inf | 0.8011 | 0.2453 | | 0.9662 | 2.0 | 160 | inf | 0.6760 | 0.1957 | | 0.8283 | 3.0 | 240 | inf | 0.5605 | 0.1560 | | 0.747 | 4.0 | 320 | inf | 0.6229 | 0.2060 | | 0.6936 | 5.0 | 400 | inf | 0.6425 | 0.1831 | | 0.6788 | 6.0 | 480 | inf | 0.5411 | 0.1585 | | 0.6271 | 7.0 | 560 | inf | 0.5229 | 0.1509 | | 0.7234 | 8.0 | 640 | inf | 0.6888 | 0.2353 | | 1.1405 | 9.0 | 720 | inf | 0.9791 | 0.5775 | | 2.4003 | 10.0 | 800 | inf | 0.9988 | 0.9226 | | 2.6328 | 11.0 | 880 | inf | 0.9986 | 0.9117 | | 2.9233 | 12.0 | 960 | inf | 1.0 | 0.9986 | | 3.6687 | 13.0 | 1040 | inf | 1.0 | 0.9970 | | 3.6827 | 14.0 | 1120 | inf | 1.0 | 0.9970 | | 3.6799 | 15.0 | 1200 | inf | 1.0 | 0.9970 | | 3.65 | 16.0 | 1280 | inf | 1.0 | 0.9970 | | 3.6764 | 17.0 | 1360 | inf | 1.0 | 0.9970 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1