--- library_name: transformers license: cc-by-nc-4.0 base_model: facebook/mms-1b-all tags: - generated_from_trainer metrics: - wer model-index: - name: mms-bambara-5-hours-mali-asr-dataset results: [] --- [Visualize in Weights & Biases](https://wandb.ai/asr-africa-research-team/ASR%20Africa/runs/wvhv58b0) # mms-bambara-5-hours-mali-asr-dataset This model is a fine-tuned version of [facebook/mms-1b-all](https://huggingface.co/facebook/mms-1b-all) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.4671 - Wer: 0.5549 - Cer: 0.2722 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-------:|:-----:|:---------------:|:------:|:------:| | 1.7442 | 1.7241 | 500 | 1.5016 | 0.8074 | 0.3917 | | 1.2377 | 3.4483 | 1000 | 1.4359 | 0.7090 | 0.3303 | | 1.0648 | 5.1724 | 1500 | 1.6144 | 0.6935 | 0.3324 | | 0.9677 | 6.8966 | 2000 | 1.5016 | 0.6696 | 0.3195 | | 0.8607 | 8.6207 | 2500 | 1.5432 | 0.6492 | 0.3165 | | 0.7663 | 10.3448 | 3000 | 1.7123 | 0.6522 | 0.3164 | | 0.6906 | 12.0690 | 3500 | 1.7516 | 0.6208 | 0.3015 | | 0.6025 | 13.7931 | 4000 | 1.7237 | 0.6187 | 0.3121 | | 0.5379 | 15.5172 | 4500 | 1.8363 | 0.6310 | 0.3129 | | 0.4772 | 17.2414 | 5000 | 1.8713 | 0.5894 | 0.2843 | | 0.4267 | 18.9655 | 5500 | 2.0141 | 0.5962 | 0.2915 | | 0.3759 | 20.6897 | 6000 | 2.0988 | 0.5882 | 0.2848 | | 0.3404 | 22.4138 | 6500 | 2.2643 | 0.5826 | 0.2869 | | 0.3042 | 24.1379 | 7000 | 2.4384 | 0.5733 | 0.2812 | | 0.2825 | 25.8621 | 7500 | 2.3103 | 0.5718 | 0.2844 | | 0.2543 | 27.5862 | 8000 | 2.1798 | 0.5724 | 0.2880 | | 0.23 | 29.3103 | 8500 | 2.5892 | 0.5714 | 0.2843 | | 0.2147 | 31.0345 | 9000 | 2.6667 | 0.5722 | 0.2822 | | 0.1914 | 32.7586 | 9500 | 2.7395 | 0.5748 | 0.2812 | | 0.1794 | 34.4828 | 10000 | 2.8872 | 0.5802 | 0.2847 | | 0.1675 | 36.2069 | 10500 | 2.7069 | 0.5690 | 0.2827 | | 0.1493 | 37.9310 | 11000 | 2.8134 | 0.5705 | 0.2840 | | 0.1386 | 39.6552 | 11500 | 3.0683 | 0.5615 | 0.2771 | | 0.1237 | 41.3793 | 12000 | 3.2212 | 0.5567 | 0.2753 | | 0.117 | 43.1034 | 12500 | 3.2128 | 0.5593 | 0.2703 | | 0.1082 | 44.8276 | 13000 | 3.2066 | 0.5562 | 0.2732 | | 0.0978 | 46.5517 | 13500 | 3.4042 | 0.5551 | 0.2720 | | 0.0927 | 48.2759 | 14000 | 3.4410 | 0.5541 | 0.2723 | | 0.0915 | 50.0 | 14500 | 3.4671 | 0.5549 | 0.2722 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.1.0+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3