--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-CV_Fleurs-lg-20hrs-v5 results: [] --- # w2v-bert-2.0-CV_Fleurs-lg-20hrs-v5 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4606 - Wer: 0.3643 - Cer: 0.0782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 80 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.4915 | 1.0 | 2058 | 0.3507 | 0.4166 | 0.0815 | | 0.3195 | 2.0 | 4116 | 0.3251 | 0.3885 | 0.0772 | | 0.2817 | 3.0 | 6174 | 0.3035 | 0.3921 | 0.0787 | | 0.27 | 4.0 | 8232 | 0.3337 | 0.4144 | 0.0824 | | 0.2645 | 5.0 | 10290 | 0.3604 | 0.4144 | 0.0849 | | 0.2579 | 6.0 | 12348 | 0.3396 | 0.4502 | 0.0933 | | 0.2609 | 7.0 | 14406 | 0.3439 | 0.3976 | 0.0830 | | 0.2557 | 8.0 | 16464 | 0.3807 | 0.4361 | 0.0953 | | 0.242 | 9.0 | 18522 | 0.3477 | 0.3997 | 0.0841 | | 0.2198 | 10.0 | 20580 | 0.3354 | 0.3986 | 0.0845 | | 0.1912 | 11.0 | 22638 | 0.3337 | 0.3951 | 0.0837 | | 0.1716 | 12.0 | 24696 | 0.3179 | 0.3646 | 0.0779 | | 0.1566 | 13.0 | 26754 | 0.3486 | 0.3747 | 0.0797 | | 0.1422 | 14.0 | 28812 | 0.3320 | 0.3838 | 0.0808 | | 0.1284 | 15.0 | 30870 | 0.3482 | 0.3668 | 0.0807 | | 0.1142 | 16.0 | 32928 | 0.3330 | 0.3721 | 0.0780 | | 0.1005 | 17.0 | 34986 | 0.3272 | 0.3539 | 0.0738 | | 0.0897 | 18.0 | 37044 | 0.3906 | 0.3732 | 0.0763 | | 0.0787 | 19.0 | 39102 | 0.3827 | 0.3597 | 0.0755 | | 0.0697 | 20.0 | 41160 | 0.3883 | 0.3586 | 0.0770 | | 0.0632 | 21.0 | 43218 | 0.3923 | 0.3798 | 0.0797 | | 0.0544 | 22.0 | 45276 | 0.4401 | 0.3689 | 0.0803 | | 0.0503 | 23.0 | 47334 | 0.4111 | 0.3704 | 0.0790 | | 0.0438 | 24.0 | 49392 | 0.4019 | 0.3599 | 0.0762 | | 0.0392 | 25.0 | 51450 | 0.4198 | 0.3625 | 0.0774 | | 0.0372 | 26.0 | 53508 | 0.4374 | 0.3650 | 0.0794 | | 0.0333 | 27.0 | 55566 | 0.4606 | 0.3643 | 0.0782 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.1.0+cu118 - Datasets 3.1.0 - Tokenizers 0.20.1