--- library_name: transformers license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer metrics: - wer model-index: - name: w2v-bert-2.0-CV_Fleurs-lg-50hrs-v4 results: [] --- # w2v-bert-2.0-CV_Fleurs-lg-50hrs-v4 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3482 - Wer: 0.2832 - Cer: 0.0557 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 1.9126 | 1.0 | 3160 | 0.3415 | 0.4010 | 0.0853 | | 0.2463 | 2.0 | 6320 | 0.2633 | 0.3447 | 0.0670 | | 0.1946 | 3.0 | 9480 | 0.2369 | 0.3201 | 0.0633 | | 0.168 | 4.0 | 12640 | 0.2246 | 0.3098 | 0.0607 | | 0.15 | 5.0 | 15800 | 0.2179 | 0.3205 | 0.0595 | | 0.1394 | 6.0 | 18960 | 0.2245 | 0.3060 | 0.0594 | | 0.1283 | 7.0 | 22120 | 0.2173 | 0.3029 | 0.0600 | | 0.1219 | 8.0 | 25280 | 0.2203 | 0.3183 | 0.0583 | | 0.1155 | 9.0 | 28440 | 0.2148 | 0.2923 | 0.0573 | | 0.1117 | 10.0 | 31600 | 0.2334 | 0.3037 | 0.0586 | | 0.1031 | 11.0 | 34760 | 0.2162 | 0.2876 | 0.0578 | | 0.0908 | 12.0 | 37920 | 0.2210 | 0.2883 | 0.0560 | | 0.0804 | 13.0 | 41080 | 0.2271 | 0.3001 | 0.0581 | | 0.0706 | 14.0 | 44240 | 0.2403 | 0.2753 | 0.0540 | | 0.0602 | 15.0 | 47400 | 0.2528 | 0.2955 | 0.0578 | | 0.0512 | 16.0 | 50560 | 0.2695 | 0.2883 | 0.0555 | | 0.0432 | 17.0 | 53720 | 0.2597 | 0.2903 | 0.0554 | | 0.0367 | 18.0 | 56880 | 0.2764 | 0.2850 | 0.0556 | | 0.0317 | 19.0 | 60040 | 0.2954 | 0.2908 | 0.0570 | | 0.0267 | 20.0 | 63200 | 0.3053 | 0.2878 | 0.0556 | | 0.0236 | 21.0 | 66360 | 0.3087 | 0.2868 | 0.0565 | | 0.0208 | 22.0 | 69520 | 0.2907 | 0.2970 | 0.0584 | | 0.0175 | 23.0 | 72680 | 0.3274 | 0.2838 | 0.0550 | | 0.0169 | 24.0 | 75840 | 0.3482 | 0.2832 | 0.0557 | ### Framework versions - Transformers 4.46.0 - Pytorch 2.1.0+cu118 - Datasets 3.0.2 - Tokenizers 0.20.1